Log in

Soliton-shape-preserving and soliton-complex interactions for a (1+1)-dimensional nonlinear dispersive-wave system in shallow water

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Under investigation in this paper is a (1+1)-dimensional nonlinear dispersive-wave system for the long gravity waves in shallow water. With symbolic computation, we derive the multi-soliton solutions for the system. Four sorts of interactions for the system are discussed: (1) Soliton shape preserving, in which two solitons undergo the fusion behavior while the amplitudes and velocities of the other two remain unchanged during the interaction process; (2) Head-on collisions between the two-soliton complexes; (3) Overtaking collisions between the two-soliton complexes; (4) Two-soliton complexes formed by the inelastic collisions. Such soliton structures might be of certain value in fluid dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hong, W.P.: Comment on: “Spherical Kadomtsev Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation”. Phys. Lett. A 361, 520–522 (2007)

    Article  MATH  Google Scholar 

  2. Tian, B., Gao, Y.T.: Spherical nebulons and Bäcklund transformation for a space or laboratory un-magnetized dusty plasma with symbolic computation. Eur. Phys. J. D 33, 59–65 (2005)

    Article  Google Scholar 

  3. Tian, B., Gao, Y.T.: Comment on “Exact solutions of cylindrical and spherical dust ion acoustic waves” [Phys. Plasmas 10, 4162 (2003)]. Phys. Plasmas 12, 054701 (2005)

    Article  MathSciNet  Google Scholar 

  4. Tian, B., Gao, Y.T.: Cylindrical nebulons symbolic computation and Bäcklund transformation for the cosmic dust acoustic waves. Phys. Plasmas. 12, 070703 (2005)

    Article  MathSciNet  Google Scholar 

  5. Tian, B., Gao, Y.T.: Spherical Kadomtsev–Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation. Phys. Lett. A 340, 243–250 (2005)

    Article  MATH  Google Scholar 

  6. Tian, B., Gao, Y.T.: On the solitonic structures of the cylindrical dust-acoustic and dust-ion-acoustic waves with symbolic computation. Phys. Lett. A 340, 449–455 (2005)

    Article  MATH  Google Scholar 

  7. Tian, B., Gao, Y.T.: Symbolic computation on cylindrical-modified dust-ion-acoustic nebulons in dusty plasmas. Phys. Lett. A 362, 283–288 (2007)

    Article  MATH  Google Scholar 

  8. Gao, Y.T., Tian, B.: Cosmic dust-ion-acoustic waves spherical modified Kadomtsev–Petviashvili model, and symbolic computation. Phys. Plasmas 13, 112901 (2006)

    Article  Google Scholar 

  9. Gao, Y.T., Tian, B.: (3+1)-dimensional generalized Johnson model for cosmic dust-ion-acoustic nebulons with symbolic computation. Phys. Plasmas 13, 120703 (2006)

    Article  Google Scholar 

  10. Gao, Y.T., Tian, B.: Cylindrical Kadomtsev–Petviashvili model nebulons and symbolic computation for cosmic dust ion-acoustic waves. Phys. Lett. A 349, 314–319 (2006)

    Article  Google Scholar 

  11. Gao, Y.T., Tian, B.: Reply to: “Comment on: Spherical Kadomtsev–Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation [Phys. Lett. A 361, 520 (2007)]. Phys. Lett. A 361, 523–528 (2007)

    Article  MATH  Google Scholar 

  12. Gao, Y.T., Tian, B.: On the non-planar dust-ion-acoustic waves in cosmic dusty plasmas with transverse perturbations. Europhys. Lett. 77, 15001 (2007)

    Article  Google Scholar 

  13. Tian, B., Wei, G.M., Zhang, C.Y., Shan, W.R., Gao, Y.T.: Transformations for a generalized variable-coefficient Korteweg–de Vries model from blood vessels Bose–Einstein condensates, rods and positons with symbolic computation. Phys. Lett. A 356, 8–16 (2006)

    Article  MATH  Google Scholar 

  14. Tian, B., Gao, Y.T.: Symbolic-computation study of the perturbed nonlinear Schrödinger model in inhomogeneous optical fibers. Phys. Lett. A 342, 228–236 (2005)

    Article  MATH  Google Scholar 

  15. Tian, B., Gao, Y.T., Zhu, H.W.: Variable-coefficient higher-order nonlinear Schrödinger model in optical fibers: Variable-coefficient bilinear form Bäcklund transformation, brightons and symbolic computation. Phys. Lett. A 366, 223–229 (2007)

    Article  MATH  Google Scholar 

  16. Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg–de Vries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)

    Article  MATH  Google Scholar 

  17. Kadomtsev, B.B., Petviashvili, V.I.: On the stability of solitary waves in weakly dispersing media. Sov. Phys. Dokl. 15, 539–541 (1970)

    MATH  Google Scholar 

  18. Whitham, G.B.: Variational methods and applications to water waves. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 299, 6–25 (1967)

    Article  MATH  Google Scholar 

  19. Broer, L.J.: Approximate equations for long water waves. Appl. Sci. Res. 31, 377–395 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kaup, D.J.: A higher-order water wave equation and its method of solution. Prog. Theor. Phys. 54, 396–408 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  21. Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wu, T.Y., Zhang, J.E.: In: Cook, L.P., Roytburd, V., Tulin, M. (eds.) Mathematics is for Solving Problems, pp. 233–241. SIAM, Philadelphia (1996)

    Google Scholar 

  23. Chen, C.L., Tang, X.Y., Lou, S.Y.: Exact solutions of (2+1)-dimensional dispersive long wave equation. Phys. Rev. E 66, 036605 (2002)

    Article  MathSciNet  Google Scholar 

  24. Li, Y.S.: Some water wave equations and integrability. J. Nonlinear Math. Phys. 12, 466–481 (2002)

    Article  Google Scholar 

  25. Ji, X.D., Chen, C.L., Zhang, J.E., Li, Y.S.: Lie symmetry analysis of Wu–Zhang equation. J. Math. Phys. 45, 448–460 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kaup, D.J.: A higher-order water wave equation and the method for solving it. Prog. Theor. Phys. 54, 396–408 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kupershmidt, B.A.: Mathematics of dispersive water waves. Commun. Math. Phys. 99, 51–73 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, Y.S., Ma, W.X., Zhang, J.E.: Darboux transformation of classical Boussinesq system and its new solutions. Phys. Lett. A 275, 60–66 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, Y.S., Zhang, J.E.: Darboux transformation of classical Boussinesq system and its multi-soliton solutions. Phys. Lett. A 284, 253–258 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang, Y., Chang, H., Li, N.: Explicit N-fold Darboux transformation for the classical Boussinesq system and multi-soliton solutions. Phys. Lett. A 373, 454–457 (2009)

    Article  MathSciNet  Google Scholar 

  31. Liu, P.: Darboux transformation of Broer–Kaup system and its soliton solutions. Acta Sci. Math. 26A, 999–1007 (2006)

    Google Scholar 

  32. Li, Y.S., Zhang, J.E.: Bidirectional soliton solutions of the classical Boussinesq system and AKNS system. Chaos Solitons Fractals 16, 271–277 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang, J.E., Li, Y.S.: Bidirectional solitons on water. Phys. Rev. E 67, 016306 (2003)

    Article  MathSciNet  Google Scholar 

  34. Lin, J., Ren, B., Li, H.M., Li, Y.S.: Soliton solutions for two nonlinear partial differential equations using a Darboux transformation of the Lax pairs. Phys. Rev. E 77, 036605 (2008)

    Article  MathSciNet  Google Scholar 

  35. Zhang, Y., Li, J.B., Lü, Y.N.: The exact solution and integrable properties to the variable-coefficient modified Korteweg–de Vries equation. Ann. Phys. 323, 3059–3064 (2008)

    Article  MATH  Google Scholar 

  36. Li, J., Xu, T., Meng, X.H., Zhang, Y.X., Zhang, H.Q., Tian, B.: Lax pair Bäcklund transformation and N-soliton-like solution for a variable-coefficient Gardner equation from nonlinear lattice, plasma physics and ocean dynamics with symbolic computation. J. Math. Anal. Appl. 336, 1443–1455 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Freeman, N.C., Nimmo, J.J.: Soliton solutions of the Korteweg–de Vries and Kadomtsev–Petviashvili equations: The Wronskian technique. Phys. Lett. A 95, 1–3 (1983)

    Article  MathSciNet  Google Scholar 

  38. Nimmo, J.J.: A bilinear Bäcklund transformation for the nonlinear Schrödinger equation. Phys. Lett. A 99, 279–280 (1983)

    Article  MathSciNet  Google Scholar 

  39. Nimmo, J.J., Freeman, N.C.: A method of obtaining the N-soliton solution of the Boussinesq equation in terms of a Wronskian. Phys. Lett. A 95, 4–6 (1983)

    Article  MathSciNet  Google Scholar 

  40. Nimmo, J.J., Freeman, N.C.: The use of Bäcklund transformations in obtaining N-soliton solutions in Wronskian form. J. Phys. A 17, 1415 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  41. Freeman, N.C.: Soliton solutions of non-linear evolution equations. IMA J. Appl. Math. 32, 125–141 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  42. Liu, Q.M.: Double Wronskian solutions of the AKNS and the classical Boussinesq hierarchies. J. Phys. Soc. Jpn. 59, 3520–3527 (1990)

    Article  Google Scholar 

  43. Zha, Q.L., Li, Z.B.: New multi-soliton solutions for the (2+1)-dimensional Kadomtsev–Petviashvili equation. Commun. Theor. Phys. 49, 585–589 (2008)

    Article  Google Scholar 

  44. Zhou, Z.J., Li, Z.B.: A unified explicit construction of 2N-soliton solutions for evolution equations determined by 2×2 AKNS system. Commun. Theor. Phys. 39, 257–260 (2003)

    Google Scholar 

  45. Akhmediev, N., Ankiewicz, A.: Multi-soliton complexes. Chaos 10, 600–612 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  46. Liu, W.J., Tian, B., Zhang, H.Q., Li, L.L., Xue, Y.S.: Soliton interaction in the higher-order nonlinear Schrödinger equation investigated with Hirota’s bilinear method. Phys. Rev. E 77, 066605 (2008)

    Article  MathSciNet  Google Scholar 

  47. Liu, W.J., Tian, B., Zhang, H.Q.: Types of solutions of the variable-coefficient nonlinear Schrödinger equation with symbolic computation. Phys. Rev. E 78, 066613 (2008)

    Article  MathSciNet  Google Scholar 

  48. Liu, W.J., Tian, B., Zhang, H.Q., Xu, T., Li, H.: Solitary wave pulses in optical fibers with normal dispersion and higher-order effects. Phys. Rev. A 79, 063810 (2009)

    Article  Google Scholar 

  49. Liu, W.J., Tian, B., Xu, T., Sun, K., Jiang, Y.: Bright and dark solitons in the normal dispersion regime of inhomogeneous optical fibers: Soliton interaction and soliton control. Ann. Phys. 325, 1633–1644 (2010)

    Article  MATH  Google Scholar 

  50. Xu, T., Tian, B., Li, L.L., Lü, X., Zhang, C.: Dynamics of Alfvén solitons in inhomogeneous plasmas. Phys. Plasmas 15, 102307 (2008)

    Article  Google Scholar 

  51. Xu, T., Tian, B.: Bright N-soliton solutions in terms of the triple Wronskian for the coupled nonlinear Schrödinger equations in optical fibers. J. Phys. A 43, 245205 (2010)

    Article  MathSciNet  Google Scholar 

  52. Xu, T., Tian, B.: An extension of the Wronskian technique for the multicomponent Wronskian solution to the vector nonlinear Schrödinger equation. J. Math. Phys. 51, 033504 (2010)

    Article  MathSciNet  Google Scholar 

  53. Zhang, H.Q., Xu, T., Li, J., Tian, B.: Integrability of an N-coupled nonlinear Schrödinger system for polarized optical waves in an isotropic medium via symbolic computation. Phys. Rev. E 77, 026605 (2008)

    Article  MathSciNet  Google Scholar 

  54. Zhang, H.Q., Tian, B., Lü, X., Li, H., Meng, X.H.: Soliton interaction in the coupled mixed derivative nonlinear Schrödinger equations. Phys. Lett. A 373, 4315–4321 (2009)

    Article  MathSciNet  Google Scholar 

  55. Zhang, H.Q., Tian, B., Xu, T., Li, H., Zhang, C., Zhang, H.: Lax pair and Darboux transformation for multi-component modified Korteweg–de Vries equations. J. Phys. A 41, 355210 (2008)

    Article  MathSciNet  Google Scholar 

  56. Zhang, H.Q., Tian, B., Meng, X.H., Lü, X., Liu, W.J.: Conservation laws, soliton solutions and modulational instability for the higher-order dispersive nonlinear Schrödinger equation. Eur. Phys. J. B 72, 233–239 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  57. Chen, D.Y., Bi, J.B., Zhang, D.J.: New double Wronskian solutions of the AKNS equation. Sci. China Ser. A 51, 55–69 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  58. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Tian Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Gao, YT., Meng, DX. et al. Soliton-shape-preserving and soliton-complex interactions for a (1+1)-dimensional nonlinear dispersive-wave system in shallow water. Nonlinear Dyn 66, 161–168 (2011). https://doi.org/10.1007/s11071-010-9918-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-010-9918-9

Keywords

Navigation