Log in

Analysis of stability and bifurcation for an SEIV epidemic model with vaccination and nonlinear incidence rate

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, an SEIV epidemic model with vaccination and nonlinear incidence rate is formulated. The analysis of the model is presented in terms of the basic reproduction number R 0. It is shown that the model has multiple equilibria and using the center manifold theory, the model exhibits the phenomenon of backward bifurcation where a stable disease-free equilibrium coexists with a stable endemic equilibrium for a certain defined range of R 0. We also discuss the global stability of the endemic equilibrium by using a generalization of the Poincaré–Bendixson criterion. Numerical simulations are presented to illustrate the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thieme, H.R.: A model for the spatial spread of an epidemic. J. Math. Biol. 4, 337–351 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  2. Wilson, L.O.: An epidemic model involving a threshold. Math. Biosci. 15, 109–121 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  3. Zhen, J., Haque, M., Liu, X.: Pulse vaccination in the periodic infection rate SIR epidemic model. Int. J. Biomath. 1(4), 409–432 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Zou, W., **e, J.: An SI epidemic model with nonlinear infection rate and stage structure. Int. J. Biomath. 2(1), 19–27 (2009)

    Article  MathSciNet  Google Scholar 

  5. Meng, X., Li, Z., Wang, X.: Dynamics of a novel nonlinear SIR model with double epidemic hypothesis and impulsive effects. Nonlinear Dyn. 59(3), 503–513 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Li, M.Y., Muldowney, J.S.: Global stability for the SEIR model in epidemiology. Math. Biosci. 125, 155–164 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Wilson, E.B., Worcester, J.: The law of mass action in epidemiology. Proc. Natl. Acad. Sci. 31, 24–34 (1945)

    Article  MathSciNet  Google Scholar 

  8. Wilson, E.B., Worcester, J.: The law of mass action in epidemiology. II. Proc. Natl. Acad. Sci. 31, 109–116 (1945)

    Article  MathSciNet  Google Scholar 

  9. Severo, N.C.: Generalizations of some stochastic epidemic models. Math. Biosci. 4, 395–402 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  10. Capasso, V., Serio, G.: A generalization of Kermack–McKendrick deterministic epidemic model. Math. Biosci. 42, 43–61 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  11. Liu, W.M., Levin, S.A., Iwasa, Y.: Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models. J. Math. Biol. 23, 187–204 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  12. van den Driessche, P., Watmough, J.: A simple SIS epidemic model with a backward bifurcation. J. Math. Biol. 40, 525–540 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. van den Driessche, P., Watmough, J.: Epidemic solutions and endemic catastrophes. Fields Inst. Commun. 36, 247–57 (2003)

    Google Scholar 

  14. Liu, H., Xu, H., Yu, J., Zhu, G.: Stability on coupling SIR epidemic model with vaccination. J. Appl. Math. 2005(4), 301–319 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Greenhalgh, D.: Analytical threshold and stability results on age-structured epidemic model with vaccination. Theor. Popul. Biol. 33, 266–290 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  16. Moghadas, S.M., Gumel, A.B.: A mathematical study of a model for childhood diseases with non-permanent immunity. J. Comput. Appl. Math. 157(2), 347–363 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Castillo-Chavez, C., Song, B.J.: Dynamical models of tuberculosis and their applications. Math. Biosci. Eng. 1, 361–404 (2004)

    MATH  MathSciNet  Google Scholar 

  19. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, Berlin (1983)

    MATH  Google Scholar 

  20. Hale, J.K.: Ordinary Differential Equations. Wiley, New York (1969)

    MATH  Google Scholar 

  21. Thieme, H.R.: Convergence results and a Poincaré–Bendixson trichotomy for asymptotically autonomous differential equations. J. Math. Biol. 30, 755–763 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hirsch, M.W.: Systems of differential equations that are competitive or cooperative VI: A local C r closing lemma for 3-dimensional systems. Ergod. Theory Dyn. Syst. 11, 443–454 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  23. Li, J.: Simple mathematical models for interacting wild and transgenic mosquito populations. Math. Biosci. 189, 39–59 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Li, J., Zhou, Y., Ma, Z., Hyman, J.M.: Epidemiological models for mutating pathogens. SIAM J. Appl. Math. 65, 1–23 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Li, M.Y., Graef, J.R., Wang, L., Karsai, J.: Global dynamics of a SEIR model with varying total population size. Math. Biosci. 160, 191–213 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  26. Freedman, H.I., Ruan, S., Tang, M.: Uniform persistence and flows near a closed positively invariant set. J. Differ. Equ. 6, 583–600 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  27. Hutson, V., Schmitt, K.: Permanence and the dynamics of biological systems. Math. Biosci. 111, 1–71 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  28. Martin, R.H. Jr.: Logarithmic norms and projections applied to linear differential systems. J. Math. Anal. Appl. 45, 432–454 (1974)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **gan Cui.

Additional information

This work is supported by the National Natural Science Foundation of China (Nos. 10771104 and 11071011), Program for Innovative Research Team (in Science and Technology) in University of Henan Province and Innovation Scientists and Technicians Troop Construction Projects of Henan Province, Program for Key Laboratory of Simulation and Control for Population Ecology in **nyang Normal University (No. 201004), Natural Science Foundation of the Education Department of Henan Province (No. 2009B110020) and Colleges and Universities in Jiangsu Province Plans to Graduate Research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, X., Cui, J. Analysis of stability and bifurcation for an SEIV epidemic model with vaccination and nonlinear incidence rate. Nonlinear Dyn 63, 639–653 (2011). https://doi.org/10.1007/s11071-010-9826-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-010-9826-z

Keywords

Navigation