Log in

Dynamic analysis of rubber-like material using absolute nodal coordinate formulation based on the non-linear constitutive law

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Non-linear constitutive models of the elastic forces for a hyperelastic material are presented. Three elastic force models including Neo-Hookean, Mooney-Riblin 2nd, and Yeoh models are derived based on non-linear continuum mechanics. Elastic forces are applied to the three-dimensional absolute nodal coordinate beam element, and the transient response of the cantilever beam is analyzed. Simulation results are compared to experiment data, and the dynamic characteristics of elastic force models presented in this paper are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shabana, A.: An Absolute Nodal Coordinate Formulation for the large rotation and deformation analysis of flexible bodies. Technical Report # MBS96-1-UIC, Department of Mechanical Engineering, University of Illinois at Chicago (1996)

  2. Shabana, A.: Dynamics of multibody systems, 3rd edn. Cambridge University Press, Cambridge (2005), pp. 309–342

    Book  MATH  Google Scholar 

  3. Shabana, A., Schwertassek, R.: Equivalence of the floating frame of reference approach and finite element formulations. Int. J. Non-Linear Mech. 33(3), 417–432 (1998)

    Article  MATH  Google Scholar 

  4. Shabana, A.: Computer implementation of the absolute nodal coordinate formulation for flexible multibody dynamics. Nonlinear Dyn. 16, 293–306 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Shabana, A., Yakoub, R.: Three-dimensional absolute nodal coordinate formulation for beam elements: Theroy. ASME J. Mech. Des. 123, 606–613 (2001)

    Article  Google Scholar 

  6. Iwai, R., Kobayashi, N.: A new flexible multibody beam element based on the absolute nodal coordinate formulation using the global shape function and the analytical mode shape function. Nonlinear Dyn. 34, 207–232 (2003)

    Article  MATH  Google Scholar 

  7. Shabana, A., Christensen, A.: Three-dimensional absolute nodal coordinate formulation: Plate problem. Int. J. Numer. Meth. Eng. 40, 2775–2790 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dmitrochenko, O., Pogorelov, D.: Generalization of plate finite elements for absolute nodal coordinate formulation. Multibody Syst. Dyn. 10, 17–43 (2003)

    Article  MATH  Google Scholar 

  9. Yoo, W., Lee, J., Park, S., Shon, J., Dmitrochenko, O., Pogorelov, D.: Large oscillations of a thin cantilever beam: Physical experiments and simulation using the absolute nodal coordinate formulation. Nonlinear Dyn. 34, 3–29 (2003)

    Article  MATH  Google Scholar 

  10. Yoo, W., Lee, J., Park, S., Shon, J., Dmitrochenko, O., Pogorelov, D.: Large deflection analysis of a thin plate: Computer simulations and experiments. Multibody Syst. Dyn. 11, 185–208 (2004)

    Article  MATH  Google Scholar 

  11. Berzeri, M., Shabana, A.: Development of simple models for the elastic forces in the absolute nodal coordinate formulation. J. Sound Vib. 235(4), 539–565 (2000)

    Article  Google Scholar 

  12. Berzeri, M., Campanelli, M., Shabana, A.: Definition of the elastic forces in the finite-element absolute nodal coordinate formulation and the floating frame of reference formulation. Multibody Syst. Dyn. 5, 21–54 (2001)

    Article  MATH  Google Scholar 

  13. Sopanen, J., Mikkola, A.: Description of elastic forces in absolute nodal coordinate formulation. Nonlinear Dyn. 34, 53–74 (2003)

    Article  MATH  Google Scholar 

  14. Maqueda, L., Shabana, A.: Poisson modes and general nonlinear constitutive models in the large displacement analysis of Beam. Multibody Syst. Dyn. 18, 375–396 (2007)

    Article  MATH  Google Scholar 

  15. Cormac, F., Brendan, A.O.: McCormack, Simulating the wrinkling and aging of skin with a multi-layer finite element model. J. Biomech. 43, 442–448 (2010)

    Article  Google Scholar 

  16. Renaud, C., Cros, J.M., Feng, Z.Q., Yang, B.: The Yeoh model applied to the modelling of large deformation contact/impact problems. Int. J. Imp. Eng. 36, 659–666 (2009)

    Article  Google Scholar 

  17. Hussein, B.A., Weed, D., Shabanana, A.: Clamped end conditions and cross section deformation in the finite element absolute nodal coordinate formulation. Multibody Syst. Dyn. 21(4), 375–393 (2009)

    Article  MATH  Google Scholar 

  18. Bechir, H., Chevalier, L., Chauche, M., Boufala, K.: Hyperelastic constitutive model for rubber-like materials based on the first Seth strain measures invariant. Eur. J. Mech. A/Solids 25, 110–124 (2006)

    Article  MATH  Google Scholar 

  19. Shabana, A.: Computational Continuum Mechanics. Cambridge University Press, Cambridge (2008), pp. 131–150

    Book  MATH  Google Scholar 

  20. Boyce, M.C., Arruda, E.M.: Constitutive models of rubber elasticity. Rubber Chem. Technol. 73, 504–523 (2000)

    Google Scholar 

  21. Yeoh, O.H.: Characterization of elastic properties of carbon black filled rubber vulcanizates. Rubber Chem. Technol. 66, 754–771 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Won Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, S.P., Park, T.W. & Chung, W.S. Dynamic analysis of rubber-like material using absolute nodal coordinate formulation based on the non-linear constitutive law. Nonlinear Dyn 63, 149–157 (2011). https://doi.org/10.1007/s11071-010-9792-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-010-9792-5

Keywords

Navigation