Log in

Dynamics equations of a mobile robot provided with caster wheel

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Kinematics and dynamics of a mobile robot, consisting of a platform, two conventional wheels and a crank that controls the motion of a free rolling caster wheel, are analyzed in the paper. Based on several matrix relations of connectivity, the characteristic velocities and accelerations of this non-holonomic mechanical system are derived. Using the principle of virtual work, expressions and graphs for the torques and the powers of the two driving wheels are established. It has been verified the results in the framework of the second-order Lagrange equations with their multipliers. The study of the dynamics problems of the wheeled mobile robots is done mainly to solve successfully the control of the motion of such systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ox 0 y 0 z 0 :

inertial reference frame with origin in the ground surface

a k,k−1 :

orthogonal transformation matrix

\(\vec{u}_{1},\vec{u}_{2},\vec{u}_{3}\) :

three right-handed orthogonal unit vectors

θ 1,θ 2 :

rotation angles of two driving wheels

θ 3 :

rotation angle of the caster wheel

ψ :

rotation angle of the crank PO 3

l :

distance between the wheel centers

a+b :

height of the triangular platform

r :

radius of each driving wheel

r 0 :

radius of the caster wheel

\(\vec{r}_{21}^{A},\vec{r}_{21}^{B},\vec{r}_{32}^{C}\) :

relative position vectors of wheel centers

θ,x 10,y 10,H :

orientation angle and center coordinates of the moving platform

\(\vec{\omega}_{k,k-1}\) :

relative angular velocity of T k rigid body

\(\vec{\omega}_{k0}\) :

absolute angular velocity of T k

\(\tilde{\omega}_{k,k-1}\) :

skew-symmetric matrix associated with the angular velocity \(\vec{\omega}_{k,k-1}\)

\(\vec{\varepsilon}_{k,k-1}\) :

relative angular acceleration of T k

\(\vec{\varepsilon}_{k0}\) :

absolute angular acceleration of T k

\(\tilde{\varepsilon}_{k,k-1}\) :

skew-symmetric matrix associated with the angular acceleration \(\vec{\varepsilon}_{k,k-1}\)

\(\vec{r}_{k}^{C}\) :

position vector of the mass center of T k

\(m_{2}^{A},m_{2}^{B},\hat{J}_{2}^{A},\hat{J}_{2}^{B}\) :

mass and symmetric matrix of tensor of inertia of each driving wheel

\(m_{2}^{C},\hat{J}_{2}^{C}\) :

mass and tensor of inertia of the crank

\(m_{3}^{C},\hat{J}_{3}^{C}\) :

mass and tensor of inertia of the caster wheel

M 1,M 2 :

torques applied by two electric motors to the wheels jointed at A 2,B 2

References

  1. Agulló, J., Cardona, S., Vivancos, J.: Kinematics of vehicle with directional sliding wheels. Mech. Mach. Theory 22(4), 295–301 (1987)

    Article  Google Scholar 

  2. Abou-Samah, M., Krovi, V.: Cooperative frameworks for multiple mobile robots. In: CCToMM Symposium on Mechanisms, Machines and Mechatronics, Canadian Space Agency (Saint-Hubert) Montréal, Canada (2001)

  3. Muir, F.P., Neuman, C.P.: Kinematic modeling of mobile robots. J. Robot. Syst. 4(2), 281–304 (1987)

    Article  Google Scholar 

  4. Angeles, J.: Fundamentals of Robotic Mechanical Systems: Theory, Methods and Algorithms. Springer, New York (2002)

    Google Scholar 

  5. Colbaugh, R., Trabatti, M., Glass, K.: Redundant Non-Holonomic Mechanical System. Characterization and Control. Robotica, vol. 17. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  6. Kim, Y.H., Lewis, F.L., Abdallah, C.T.: A dynamic recurrent neural-network based adaptive observer for a class of non-linear systems. Automatica 33(8), 1539–1543 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Giergiel, J., Zylski, W.: Description of motion of a mobile robot by Maggie’s equations. J. Theor. Appl. Mech. 43(3), 511–521 (2005)

    Google Scholar 

  8. Hendzel, Z.: An adaptive critic network for motion control of a wheeled mobile robot. Nonlinear Dyn. 50(4), 849–855 (2007)

    Article  MATH  Google Scholar 

  9. Velinski, S.A., Gardner, J.F.: Kinematics of mobile manipulator and implications for design. J. Robot. Syst. 17(6) (2000)

  10. Papadopoulos, E., Poulakakis, E.: On motion planning of nonholonomic mobile robots. In: Proceedings of the International Symposium on Robotics, Montréal, Canada, pp. 77–82 (2000)

  11. Carricato, M., Parenti-Castelli, V.: Singularity-free fully-isotropic translational parallel mechanisms. Int. J. Robot. Res. 21, 2 (2002)

    Article  Google Scholar 

  12. Merlet, J.P.: Parallel Robots. Kluwer Academic Press, Dordrecht (2000)

    MATH  Google Scholar 

  13. Pathak, K., Franch, J., Agrawal, S.K.: Velocity and position control of a wheeled inverted pendulum by partial feedback linearization. IEEE Trans. Robot. 21(3), 505–513 (2005)

    Article  Google Scholar 

  14. Gracia, L., Tornero, J.: Kinematic modelling and singularity of wheeled mobile robots. Adv. Robot. 21(7), 793–816 (2007)

    Article  Google Scholar 

  15. Chakraborty, N., Ghosal, A.: Kinematics of wheeled mobile robots on uneven terrain. Mech. Mach. Theory 39(12), 1273–1287 (2004)

    Article  MATH  Google Scholar 

  16. Chakraborty, N., Ghosal, A.: Dynamic modelling and simulation of a wheeled mobile robot for traversing uneven terrain without slip. J. Mech. Des. 127(5), 901–909 (2005)

    Article  Google Scholar 

  17. Salerno, A., Angeles, J.: On the nonlinear controllability of a quasiholonomic mobile robot. In: Proceedings of the IEEE International Conference on Robotics & Automation ICRA’2003, Taipei, Taiwan, pp. 3379–3384 (2003)

  18. Salerno, A., Ostrovskaya, S., Angeles, J.: The dynamics of a novel rolling robot-analysis and simulation. In: Proceedings of the 11th World Congress in Mechanism and Machine Science, Tian**, China, pp. 1956–1960 (2004)

  19. Staicu, S., Zhang, D., Rugescu, R.: Dynamic modelling of a 3-DOF parallel manipulator using recursive matrix relations. In: Robotica, vol. 24, pp. 125–130. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  20. Staicu, S., Liu, X.J., Wang, J.: Inverse dynamics of the HALF parallel manipulator with revolute actuators. Nonlinear Dyn. 50(1–2), 1–12 (2007)

    Article  MATH  Google Scholar 

  21. Staicu, S., Zhang, D.: A novel dynamic modelling approach for parallel mechanisms analysis. Robot. Comput. Integrated Manuf. 24(1), 167–172 (2008)

    Article  Google Scholar 

  22. Staicu, S., Carp-Ciocardia, D.C.: Dynamic analysis of Clavel’s delta parallel robot. In: Proceedings of the IEEE International Conference on Robotics & Automation ICRA’2003, Taipei, Taiwan, pp. 4116–4121S (2003)

  23. Staicu, S.: Inverse dynamics of a planetary gear train for robotics. Mech. Mach. Theory 43(7), 918–927 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Staicu, S.: Relations matricielles de récurrence en dynamique des mécanismes. Rev. Roum. Sci. Tech. Sér. Méc. Appl. 50(1–3), 15–28 (2005)

    MathSciNet  Google Scholar 

  25. Tsai, L.W.: Robot Analysis: The Mechanics of Serial and Parallel Manipulators. Wiley, New York (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Staicu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staicu, S. Dynamics equations of a mobile robot provided with caster wheel. Nonlinear Dyn 58, 237–248 (2009). https://doi.org/10.1007/s11071-009-9474-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-009-9474-3

Keywords

Navigation