Log in

Knockdown of microRNA-17-5p Enhances the Neuroprotective Effect of Act A/Smads Signal Loop After Ischemic Injury

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Cerebral ischemic injury is a leading cause of human mortality and disability, seriously threatening human health in the world. Activin A (Act A), as a well-known neuroprotective factor, could alleviate ischemic brain injury mainly through Act A/Smads signaling. In our previous study, a noncanonical Act A/Smads signal loop with self-amplifying property was found, which strengthened the neuroprotective effect of Act A. However, this neuroprotective effect was limited due to the self-limiting behavior mediated by Smad anchor for receptor activation (SARA) protein. It was reported that microRNA-17-5p (miR-17-5p) could suppress the expression of SARA in esophageal squamous cell carcinoma. Thus we proposed that knockdown of miR-17-5p could strengthen the neuroprotective effect of Act A/Smads signal loop through SARA. To testify this hypothesis, oxygen–glucose deficiency (OGD) was introduced to highly differentiated rattus pheochromocytoma (PC12) cells. After the transfection of miR-17-5p mimic or inhibitor, the activity of Act A signal loop was quantified by the expression of phosphorylated Smad3. The results showed that suppression of miR-17-5p up-regulated the expression of SARA protein, which prolonged and strengthened the activity of Act A signaling through increased phosphorylation of downstream Smad3 and accumulation of Act A ligand. Further luciferase assay confirmed that SARA was a direct target gene of miR-17-5p. These practical discoveries will bring new insight on the endogenous neuroprotective effects of Act A signal loop by interfering a novel target: miR-17-5p.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Feigin VL, Norrving B, Mensah GA (2017) Global burden of stroke. Circ Res 120(3):439–448

    Article  CAS  PubMed  Google Scholar 

  2. Catanese L, Tarsia J, Fisher M (2017) Acute ischemic stroke therapy overview. Circ Res 120(3):541–558

    Article  CAS  PubMed  Google Scholar 

  3. Doyle KP, Simon RP, Stenzel-Poore MP (2008) Mechanisms of ischemic brain damage. Neuropharmacology 55(3):310–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22(9):391–397

    Article  CAS  PubMed  Google Scholar 

  5. Namura S, Ooboshi H, Liu J, Yenari MA (2013) Neuroprotection after cerebral ischemia. Ann N Y Acad Sci 1278:25–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu R, Yuan H, Yuan F, Yang SH (2012) Neuroprotection targeting ischemic penumbra and beyond for the treatment of ischemic stroke. Neurol Res 34(4):331–337

    Article  CAS  PubMed  Google Scholar 

  7. Mukerji SS, Katsman EA, Wilber C, Haner NA, Selman WR, Hall AK (2007) Activin is a neuronal survival factor that is rapidly increased after transient cerebral ischemia and hypoxia in mice. J Cereb Blood Flow Metab 27(6):1161–1172

    Article  CAS  PubMed  Google Scholar 

  8. Schubert D, Kimura H, Lacorbiere M, Vaughan J, Karr D, Fischer WH (1990) Activin is a nerve cell survival molecule. Nature 344(6269):868–870

    Article  CAS  PubMed  Google Scholar 

  9. Mukerji SS, Rainey RN, Rhodes JL, Hall AK (2009) Delayed activin A administration attenuates tissue death after transient focal cerebral ischemia and is associated with decreased stress-responsive kinase activation. J Neurochem 111(5):1138–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mang J, Mei CL, Wang JQ, Li ZS, Chu TT, He JT, Xu ZX (2013) Endogenous protection derived from activin A/Smads transduction loop stimulated via ischemic injury in PC12 cells. Molecules 18(10):12977–12986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang JQ, Liang WZ, Cui Y, He JT, Liu HY, Wang Y, Xue LX, Ji QY, Shi W, Shao YK, Mang J, Xu ZX (2016) Noncanonical activin A signaling in PC12 cells: a self-limiting feedback loop. Neurochem Res 41(5):1073–1084

    Article  CAS  PubMed  Google Scholar 

  12. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294(5543):853–858

    Article  CAS  PubMed  Google Scholar 

  13. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5(7):522–531

    Article  CAS  PubMed  Google Scholar 

  14. **g C, Ma G, Li X, Wu X, Huang F, Liu K, Liu Z (2016) MicroRNA-17/20a impedes migration and invasion via TGF-β/ITGB6 pathway in esophageal squamous cell carcinoma. Am J Cancer Res 6(7):1549–1562

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Li J, Zhang S, Liu X, Han D, Xu J, Ma Y (2018) Neuroprotective effects of leonurine against oxygen-glucose deprivation by targeting Cx36/CaMKII in PC12 cells. PLoS ONE 13(7):e0200705

    Article  PubMed  PubMed Central  Google Scholar 

  16. Li CT, Zhang WP, Lu YB, Fang SH, Yuan YM, Qi LL, Zhang LH, Huang XJ, Zhang L, Chen Z, Wei EQ (2009) Oxygen-glucose deprivation activates 5-lipoxygenase mediated by oxidative stress through the p38 mitogen-activated protein kinase pathway in PC12 cells. J Neurosci Res 87(4):991–1001

    Article  CAS  PubMed  Google Scholar 

  17. Sheth KN, Smith EE, Grau-Sepulveda MV, Kleindorfer D, Fonarow GC, Schwamm LH (2015) Drip and ship thrombolytic therapy for acute ischemic stroke: use, temporal trends, and outcomes. Stroke 46(3):732–739

    Article  CAS  PubMed  Google Scholar 

  18. Alkhalili K, Chalouhi N, Tjoumakaris S, Hasan D, Starke RM, Zanaty M, Rosenwasser RH, Jabbour P (2014) Endovascular intervention for acute ischemic stroke in light of recent trials. Sci World J 2014:429549

    Article  Google Scholar 

  19. Fisher M, Saver JL (2015) Future directions of acute ischaemic stroke therapy. Lancet Neurol 14(7):758–767

    Article  PubMed  Google Scholar 

  20. Hughes PE, Alexi T, Williams CE, Clark RG, Gluckman PD (1999) Administration of recombinant human Activin-A has powerful neurotrophic effects on select striatal phenotypes in the quinolinic acid lesion model of Huntington’s disease. Neuroscience 92(1):197–209

    Article  CAS  PubMed  Google Scholar 

  21. Wu DD, Lai M, Hughes PE, Sirimanne E, Gluckman PD, Williams CE (1999) Expression of the activin axis and neuronal rescue effects of recombinant activin A following hypoxic-ischemic brain injury in the infant rat. Brain Res 835(2):369–378

    Article  CAS  PubMed  Google Scholar 

  22. Krieglstein K, Zheng F, Unsicker K, Alzheimer C (2011) More than being protective: functional roles for TGF-β/activin signaling pathways at central synapses. Trends Neurosci 34(8):421–429

    Article  CAS  PubMed  Google Scholar 

  23. Hasegawa Y, Mukai H, Asashima M, Hojo Y, Ikeda M, Komatsuzaki Y, Ooishi Y, Kawato S (2014) Acute modulation of synaptic plasticity of pyramidal neurons by activin in adult hippocampus. Front Neural Circuits 8:56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, Shadrach JL, van Wijngaarden P, Wagers AJ, Williams A, Franklin RJM, Ffrench-Constant C (2013) M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci 16(9):1211–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dijkerman HC, Wood VA, Hewer RL (1996) Long-term outcome after discharge from a stroke rehabilitation unit. J R Coll Phys Lond 30(6):538–546

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Tretter YP, Hertel M, Munz B, ten Bruggencate G, Werner S, Alzheimer C (2000) Induction of activin A is essential for the neuroprotective action of basic fibroblast growth factor in vivo. Nat Med 6(7):812–815

    Article  CAS  PubMed  Google Scholar 

  27. Yang S, Fan T, Hu Q, Xu W, Yang J, Xu C, Zhang B, Chen J, Jiang H (2018) Downregulation of microRNA-17-5p improves cardiac function after myocardial infarction via attenuation of apoptosis in endothelial cells. Mol Genet Genom 293(4):883–894

    Article  CAS  Google Scholar 

  28. Wu J, Du K, Lu X (2015) Elevated expressions of serum miR-15a, miR-16, and miR-17-5p are associated with acute ischemic stroke. Int J Clin Exp Med 8(11):21071–21079

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Tan L, Meng L, Shi X, Yu B (2017) Knockdown of microRNA-17-5p ameliorates atherosclerotic lesions in ApoE-/- mice and restores the expression of very low density lipoprotein receptor. Biotechnol Lett 39(7):967–976

    Article  CAS  PubMed  Google Scholar 

  30. Wang JQ, He JT, Du ZW, Li ZS, Liu YF, Mang J, Xu ZX (2013) Effects of SARA on oxygen-glucose deprivation in PC12 cell line. Neurochem Res 38(5):961–971

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81671159), the National Natural Science Foundation of China (31700927) and Jilin Province Science and Technology Development Project (20190103081JH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-**n Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, JQ., Dong, Y., Li, SJ. et al. Knockdown of microRNA-17-5p Enhances the Neuroprotective Effect of Act A/Smads Signal Loop After Ischemic Injury. Neurochem Res 44, 1807–1817 (2019). https://doi.org/10.1007/s11064-019-02815-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-019-02815-3

Keywords

Navigation