Log in

Neuroprotective Effects of Thymoquinone in Acrylamide-Induced Peripheral Nervous System Toxicity Through MAPKinase and Apoptosis Pathways in Rat

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Acrylamide (ACR) is extensively used in industrial areas and has been demonstrated to induce neurotoxicity via oxidative stress and apoptosis. In this study, we assessed the probable protective effects of thymoquinone (TQ), an active constituent of Nigella sativa, against ACR-induced neurotoxicity. ACR (50 mg/kg, i.p., for 11 days) and TQ (2.5, 5 and 10 mg/kg, i.p., for 11 days) were administered to rats. On 12th day, gait score was examined and rats were sacrificed. Malondialdehyde (MDA) and reduced glutathione (GSH) contents were determined in sciatic nerve. Furthermore, western blotting was conducted. The exposure of rats to ACR caused severe gait disabilities. The MDA and GSH contents were increased and decreased, respectively. ACR decreased P-ERK/ERK ratio and myelin basic protein (MBP) content, but significantly increased P-JNK/JNK, P-P38/P38, Bax/Bcl-2 ratios and caspase 3 and 9 levels. Concurrently administration of TQ (5 and 10 mg/kg) with ACR, prevented gait abnormalities and meaningfully reduced MDA and elevated the GSH contents. Furthermore, TQ (5 mg/kg) elevated the P-ERK/ERK ratio and MBP content while reduced the P-JNK/JNK, P-P38/P38 ratios and apoptotic markers. MAP kinase and apoptosis signaling pathways were involved in ACR-induced neurotoxicity in rat sciatic nerve and TQ significantly reduced ACR neurotoxicity. TQ afforded neuroprotection, in part, due to its anti-oxidative stress and anti-apoptotic mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Żyżelewicz D, Nebesny E, Oracz J (2010) Acrylamide-formation, physicochemical and biological properties. Bromatol Chem Toksykol 43:415–427

    Google Scholar 

  2. Jankowska JHJ, Potocki A (2009) Acrylamide as a foreign substance in food (in Polish). Problemy Higieny i Epidemiologii 90:171–174

    Google Scholar 

  3. Dybing E, Sanner T (2003) Risk assessment of acrylamide in foods. Toxicol Sci 75:7–15

    Article  CAS  PubMed  Google Scholar 

  4. Organization WH (2002) FAO/WHO consultation on the health implications of acrylamide in food. Summary report of a meeting held in Geneva, 25–27 June 2002. World Health Organization, Geneva

    Google Scholar 

  5. Grob K, Biedermann M, Biedermann-Brem S, Noti A, Imhof D, Amrein T, Pfefferle A, Bazzocco D (2003) French fries with less than 100 µg/kg acrylamide. A collaboration between cooks and analysts. Eur Food Res Technol 217:185–194

    Article  CAS  Google Scholar 

  6. Cummins E, Butler F, Brunton N, Gormley R (2006) Factors affecting acrylamide formation in processed potato products a simulation approach. In: 13th World Congress of Food Science & Technology 2006, Nantes, pp 719–719

  7. Pennisi M, Malaguarnera G, Puglisi V, Vinciguerra L, Vacante M, Malaguarnera M (2013) Neurotoxicity of acrylamide in exposed workers. Int J Environ Res Public Health 10:3843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. LoPachin RM (2005) Acrylamide neurotoxicity: neurological, morhological and molecular endpoints in animal models. In: Chemistry and safety of acrylamide in food. Springer, Boston, pp 21–37

    Chapter  Google Scholar 

  9. Mehri S, Abnous K, Khooei A, Mousavi SH, Shariaty VM, Hosseinzadeh H (2015) Crocin reduced acrylamide-induced neurotoxicity in Wistar rat through inhibition of oxidative stress. Iran J Basic Med Sci 18:902–908

    PubMed  PubMed Central  Google Scholar 

  10. Zhu YJ, Zeng T, Zhu YB, Yu SF, Wang QS, Zhang LP, Guo X, **e KQ (2008) Effects of acrylamide on the nervous tissue antioxidant system and sciatic nerve electrophysiology in the rat. Neurochem Res 33:2310–2317

    Article  CAS  PubMed  Google Scholar 

  11. LoPachin RM, Barber DS, Geohagen BC, Gavin T, He D, Das S (2007) Structure-toxicity analysis of type-2 alkenes: in vitro neurotoxicity. Toxicol Sci 95:136–146

    Article  CAS  PubMed  Google Scholar 

  12. Arroyo EJ, Scherer SS (2000) On the molecular architecture of myelinated fibers. Histochem Cell Biol 113:1–18

    Article  CAS  PubMed  Google Scholar 

  13. LoPachin RM, Castiglia CM, Saubermann AJ (1992) Acrylamide disrupts elemental composition and water content of rat tibial nerve: I. myelinated axons. Toxicol Appl Pharmacol 115:21–34

    Article  CAS  PubMed  Google Scholar 

  14. Peter K, Santiago L (2000) Regulation of protein function by S-glutathiolation in response to oxidative and nitrosative stress. Eur J Biochem 267:4928–4944

    Article  Google Scholar 

  15. Altinoz E, Turkoz Y (2014) The protective role of n-acetylcysteine against acrylamide-induced genotoxicity and oxidative stress in rats. Gene Ther Mol Biol 16:35–43

    Google Scholar 

  16. Kopańska M, Lukáč N, Kapusta E, Formicki G (2015) Acrylamide influence on activity of acetylcholinesterase, thiol groups, and malondialdehyde content in the brain of swiss mice. J Biochem Mol Toxicol 29:472–478

    Article  CAS  Google Scholar 

  17. Johnson GL, Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298:1911–1912

    Article  CAS  PubMed  Google Scholar 

  18. Kim K-H, Park B, Rhee D-K, Pyo S (2015) Acrylamide induces senescence in macrophages through a process involving ATF3, ROS, p38/JNK, and a telomerase-independent pathway. Chem Res Toxicol 28:71–86

    Article  CAS  PubMed  Google Scholar 

  19. Pan X, Yan D, Wang D, Wu X, Zhao W, Lu Q, Yan H (2017) Mitochondrion-mediated apoptosis induced by acrylamide is regulated by a balance between Nrf2 antioxidant and MAPK signaling pathways in PC12 Cells. Mol Neurobiol 54:4781–4794

    Article  CAS  PubMed  Google Scholar 

  20. Lakshmi D, Gopinath K, Jayanthy G, Anjum S, Prakash D, Sudhandiran G (2012) Ameliorating effect of fish oil on acrylamide induced oxidative stress and neuronal apoptosis in cerebral cortex. Neurochem Res 37:1859–1867

    Article  CAS  PubMed  Google Scholar 

  21. Mehri S, Abnous K, Mousavi SH, Shariaty VM, Hosseinzadeh H (2012) Neuroprotective effect of crocin on acrylamide-induced cytotoxicity in PC12 cells. Cell Mol Neurobiol 32:227–235

    Article  CAS  PubMed  Google Scholar 

  22. Sumizawa T, Igisu H (2007) Apoptosis induced by acrylamide in SH-SY5Y cells. Arch Toxicol 81:279–282

    Article  CAS  PubMed  Google Scholar 

  23. Li S-x, Cui N, Zhang C-l, Zhao X-l, Yu S-f, **e K-q (2006) Effect of subchronic exposure to acrylamide induced on the expression of bcl-2, bax and caspase-3 in the rat nervous system. Toxicology 217:46–53

    Article  CAS  PubMed  Google Scholar 

  24. Menéndez R, García T, Garateix A, Morales RA, Regalado EL, Laguna A, Valdés O, Fernández MD (2014) Neuroprotective and antioxidant effects of Thalassia testudinum extract BM-21, against acrylamide-induced neurotoxicity in mice. J Pharm Pharmacogn Res 2:53–62

    Google Scholar 

  25. Esmaeelpanah E, Rahmatkhah A, Poormahmood N, Razavi BM, Vahdati Hasani F, Hosseinzadeh H (2015) Protective effect of green tea aqueous extract on acrylamide induced neurotoxicity. Jundishapur J Nat Pharm Prod 10:e18406

    Article  Google Scholar 

  26. Hosseinzadeh H, Tabeshpur J, Mehri S (2014) Effect of saffron extract on acrylamide-induced toxicity: in vitro and in vivo assessment. Chin J Integr Med (In Press)

  27. Motamedshariaty VS, Amel Farzad S, Nassiri-Asl M, Hosseinzadeh H (2014) Effects of rutin on acrylamide-induced neurotoxicity. DARU J Pharm Sci 22:27

    Article  CAS  Google Scholar 

  28. Mehri S, Veis Karami H, Vahdati Hassani F, Hosseinzadeh H (2014) Chrysin reduced acrylamide-induced neurotoxicity in both in vitro and in vivo assessments. Iran Biomed J 18:101–106

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Mehri S, Meshki MA, Hosseinzadeh H (2015) Linalool as a neuroprotective agent against acrylamide-induced neurotoxicity in Wistar rats. Drug Chem Toxicol 38:162–166

    Article  CAS  PubMed  Google Scholar 

  30. Ahmad A, Husain A, Mujeeb M, Khan SA, Najmi AK, Siddique NA, Damanhouri ZA, Anwar F (2013) A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pac J Trop Biomed 3:337–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Goreja W (2003) Black seed: nature’s miracle remedy. Amazing Herbs Press, New York

  32. Kanter M, Coskun O, Uysal H (2006) The antioxidative and antihistaminic effect of Nigella sativa and its major constituent, thymoquinone on ethanol-induced gastric mucosal damage. Arch Toxicol 80:217–224

    Article  CAS  PubMed  Google Scholar 

  33. Hosseinzadeh H, Parvardeh S, Asl MN, Sadeghnia HR, Ziaee T (2007) Effect of thymoquinone and Nigella sativa seeds oil on lipid peroxidation level during global cerebral ischemia-reperfusion injury in rat hippocampus. Phytomedicine 14:621–627

    Article  CAS  PubMed  Google Scholar 

  34. Abd El-Ghany RM, Sharaf NM, Kassem LA, Mahran LG, Heikal OA (2009) Thymoquinone triggers anti-apoptotic signaling targeting death ligand and apoptotic regulators in a model of hepatic ischemia reperfusion injury. Drug Discov Ther 3:296–306

    CAS  PubMed  Google Scholar 

  35. Al-Ghamdi MS (2001) The anti-inflammatory, analgesic and antipyretic activity of Nigella sativa. J Ethnopharmacol 76:45–48

    Article  CAS  PubMed  Google Scholar 

  36. Ebrahimi SS, Oryan S, Izadpanah E, Hassanzadeh K (2017) Thymoquinone exerts neuroprotective effect in animal model of Parkinson’s disease. Toxicol Lett 276:108–114

    Article  CAS  PubMed  Google Scholar 

  37. Oguz S, Kanter M, Erboga M, Erenoglu C (2012) Protective effects of thymoquinone against cholestatic oxidative stress and hepatic damage after biliary obstruction in rats. J Mol Histol 43:151–159

    Article  CAS  PubMed  Google Scholar 

  38. Mollazadeh H, Hosseinzadeh H (2014) The protective effect of Nigella sativa against liver injury: a review. Iran J Basic Med Sci 17:958–966

    PubMed  PubMed Central  Google Scholar 

  39. Boskabady MH, Mohsenpoor N, Takaloo L (2010) Antiasthmatic effect of Nigella sativa in airways of asthmatic patients. Phytomedicine 17:707–713

    Article  CAS  PubMed  Google Scholar 

  40. Abdel-Sater KA (2009) Gastroprotective effects of Nigella sativa oil on the formation of stress gastritis in hypothyroidal rats. Int J Physiol Pathophysiol Pharmacol 1:143–149

    PubMed  PubMed Central  Google Scholar 

  41. Hosseinian S, Hadjzadeh M-A-R, Roshan N, Khazaei M, Shahraki S, Mohebbati R, Rad A (2018) Renoprotective effect of Nigella sativa against cisplatin-induced nephrotoxicity and oxidative stress in rat. Saudi J Kidney Dis Transpl 29:19–29

    Article  PubMed  Google Scholar 

  42. Agbaria R, Gabarin A, Dahan A, Ben-Shabat S (2015) Anticancer activity of Nigella sativa (black seed) and its relationship with the thermal processing and quinone composition of the seed. Drug Des Devel Ther 9:3119–3124

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Mollazadeh H, Afshari AR, Hosseinzadeh H (2017) Review on the potential therapeutic roles of Nigella sativa in the treatment of patients with cancer: involvement of apoptosis: black cumin and cancer. J Pharmacopunct 20:158–172

    Article  Google Scholar 

  44. Tavakkoli A, Mahdian V, Razavi BM, Hosseinzadeh H (2017) Review on clinical trials of black seed (Nigella sativa) and its active constituent, thymoquinone. J Pharmacopunct 20:179–193

    Article  Google Scholar 

  45. Mehri S, Shahi M, Razavi BM, Hassani FV, Hosseinzadeh H (2014) Neuroprotective effect of thymoquinone in acrylamide-induced neurotoxicity in Wistar rats. Iran J Basic Med Sci 17:1007–1011

    PubMed  PubMed Central  Google Scholar 

  46. Tavakkoli A, Ahmadi A, Razavi BM, Hosseinzadeh H (2017) Black seed (Nigella sativa) and its constituent thymoquinone as an antidote or a protective agent against natural or chemical toxicities. Iran J Pharm Res 16:2–23

    PubMed  PubMed Central  Google Scholar 

  47. Hosseini SM, Taghiabadi E, Abnous K, Hariri AT, Pourbakhsh H, Hosseinzadeh H (2017) Protective effect of thymoquinone, the active constituent of Nigella sativa fixed oil, against ethanol toxicity in rats. Iran J Basic Med Sci 20:927–939

    PubMed  PubMed Central  Google Scholar 

  48. Pourbakhsh H, Taghiabadi E, Abnous K, Hariri AT, Hosseini SM, Hosseinzadeh H (2014) Effect of Nigella sativa fixed oil on ethanol toxicity in rats. Iran J Basic Med Sci 17:1020–1031

    PubMed  PubMed Central  Google Scholar 

  49. Aboul Ezz HS, Khadrawy YA, Noor NA (2011) The neuroprotective effect of curcumin and Nigella sativa oil against oxidative stress in the pilocarpine model of epilepsy: a comparison with valproate. Neurochem Res 36:2195

    Article  CAS  Google Scholar 

  50. Farkhondeh T, Samarghandian S, Shahri AMP, Samini F (2018) The neuroprotective effects of thymoquinone: a review. Dose-Response 16:1559325818761455–1559325818761455

    Article  PubMed  PubMed Central  Google Scholar 

  51. Radad K, Hassanein K, Al-Shraim M, Moldzio R, Rausch W-D (2014) Thymoquinone ameliorates lead-induced brain damage in Sprague Dawley rats. Exp Toxicol Pathol 66:13–17

    Article  CAS  PubMed  Google Scholar 

  52. Erboga M, Kanter M, Aktas C, Sener U, Fidanol Erboga Z, Bozdemir Donmez Y, Gurel A (2016) Thymoquinone ameliorates cadmium-induced nephrotoxicity, apoptosis, and oxidative stress in rats is based on its anti-apoptotic and anti-oxidant properties. Biol Trace Elem Res 170:165–172

    Article  CAS  PubMed  Google Scholar 

  53. Yang Y, Bai T, Sun P, Lian L-H, Yao Y-L, Zheng H-X, Li X, Li J-B, Wu Y-L, Nan J-X (2015) Thymoquinone, a bioactive component of Nigella sativa Linn seeds or traditional spice, attenuates acute hepatic failure and blocks apoptosis via the MAPK signaling pathway in mice. RSC Adv 5:7285–7290

    Article  CAS  Google Scholar 

  54. Ismail N, Ismail M, Mazlan M, Latiff LA, Imam MU, Iqbal S, Azmi NH, Ghafar SAA, Chan KW (2013) Thymoquinone prevents β-amyloid neurotoxicity in primary cultured cerebellar granule neurons. Cell Mol Neurobiol 33:1159–1169

    Article  CAS  PubMed  Google Scholar 

  55. Ullah I, Ullah N, Naseer MI, Lee HY, Kim MO (2012) Neuroprotection with metformin and thymoquinone against ethanol-induced apoptotic neurodegeneration in prenatal rat cortical neurons. BMC Neurosci 13:11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ismail N, Ismail M, Azmi NH, Abu Bakar MF, Basri H, Abdullah MA (2016) Modulation of hydrogen peroxide-induced oxidative stress in human neuronal cells by thymoquinone-rich fraction and thymoquinone via transcriptomic regulation of antioxidant and apoptotic signaling genes. Oxid Med Cell Longev 2016:15

    Article  CAS  Google Scholar 

  57. Limón-Pacheco JH, Hernández NA, Fanjul-Moles ML, Gonsebatt ME (2007) Glutathione depletion activates mitogen-activated protein kinase (MAPK) pathways that display organ-specific responses and brain protection in mice. Free Radic Biol Med 43:1335–1347

    Article  CAS  PubMed  Google Scholar 

  58. Dodelet-Devillers A, Zullian C, Vachon P, Beaudry F (2016) Assessment of stability of ketamine-xylazine preparations with or without acepromazine using high performance liquid chromatography-mass spectrometry. Can J Vet Res 80:86–89

    PubMed  PubMed Central  Google Scholar 

  59. Islam MS, Oliveira MC, Wang Y, Henry FP, Randolph MA, Park BH, de Boer JF (2012) Extracting structural features of rat sciatic nerve using polarization-sensitive spectral domain optical coherence tomography. J Biomed Opt 17:056012–056012

    Article  PubMed  PubMed Central  Google Scholar 

  60. Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. In: Methods in enzymol. Academic Press, New York, pp 421–431

    Google Scholar 

  61. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  62. Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25:192–205

    Article  CAS  PubMed  Google Scholar 

  63. Moron MS, Depierre JW, Mannervik B (1979) Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta 582:67–78

    Article  CAS  PubMed  Google Scholar 

  64. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  65. Shukla PK, Khanna VK, Ali MM, Maurya RR, Handa SS, Srimal RC (2002) Protective effect of Acorus calamus against acrylamide induced neurotoxicity. Phytother Res 16:256–260

    Article  PubMed  Google Scholar 

  66. Al-Majed AA, Al-Omar FA, Nagi MN (2006) Neuroprotective effects of thymoquinone against transient forebrain ischemia in the rat hippocampus. Eur J Pharmacol 543:40–47

    Article  CAS  PubMed  Google Scholar 

  67. Cotgreave IA, Gerdes RG (1998) Recent trends in glutathione biochemistry–glutathione-protein interactions: a molecular link between oxidative stress and cell proliferation? Biochem Biophys Res Commun 242:1–9

    Article  CAS  PubMed  Google Scholar 

  68. Gökce EC, Kahveci R, Gökce A, Cemil B, Aksoy N, Sargon MF, Kısa Ü, Erdoğan B, Güvenç Y, Alagöz F, Kahveci O (2016) Neuroprotective effects of thymoquinone against spinal cord ischemia-reperfusion injury by attenuation of inflammation, oxidative stress, and apoptosis. J Neurosurg Spine 24:949–959

    Article  PubMed  Google Scholar 

  69. Chen J-H, Yang C-H, Wang Y-S, Lee J-G, Cheng C-H, Chou C-C (2013) Acrylamide-induced mitochondria collapse and apoptosis in human astrocytoma cells. Food Chem Toxicol 51:446–452

    Article  CAS  PubMed  Google Scholar 

  70. Prasad SN, Muralidhara (2013) Neuroprotective efficacy of eugenol and isoeugenol in acrylamide-induced neuropathy in rats: behavioral and biochemical evidence. Neurochem Res 38:330–345

    Article  CAS  PubMed  Google Scholar 

  71. Kim EK, Choi E-J (2015) Compromised MAPK signaling in human diseases: an update. Arch Toxicol 89:867–882

    Article  CAS  PubMed  Google Scholar 

  72. Kim K, Rhee D-K, Pyo S (2011) Acrylamide induces cellular senescence in macrophage through ROS-MAPK signaling pathway. FASEB J 25:615.615–615.615

    Google Scholar 

  73. Mendilcioglu I, Karaveli S, Erdogan G, Simsek M, Taskin O, Ozekinci M (2011) Apoptosis and expression of Bcl-2, Bax, p53, caspase-3, and Fas, Fas ligand in placentas complicated by preeclampsia. Clin Exp Obstet Gynecol 38:38–42

    CAS  PubMed  Google Scholar 

  74. Kekre N, Griffin C, McNulty J, Pandey S (2005) Pancratistatin causes early activation of caspase-3 and the flip** of phosphatidyl serine followed by rapid apoptosis specifically in human lymphoma cells. Cancer Chemother Pharmacol 56:29–38

    Article  CAS  PubMed  Google Scholar 

  75. Salvesen GS, Dixit VM (1999) Caspase activation: the induced-proximity model. Proc Natl Acad Sci USA 96:10964–10967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jiang G, Zhang L, Wang H, Chen Q, Wu X, Yan X, Chen Y, **e M (2018) Protective effects of a Ganoderma atrum polysaccharide against acrylamide induced oxidative damage via a mitochondria mediated intrinsic apoptotic pathway in IEC-6 cells. Food Funct 9:1133–1143

    Article  CAS  PubMed  Google Scholar 

  77. Lee J-G, Wang Y-S, Chou C-C (2014) Acrylamide-induced apoptosis in rat primary astrocytes and human astrocytoma cell lines. Toxicol In Vitro 28:562–570

    Article  CAS  PubMed  Google Scholar 

  78. Garbay B, Heape AM, Sargueil F, Cassagne C (2000) Myelin synthesis in the peripheral nervous system. Prog Neurobiol 61:267–304

    Article  CAS  PubMed  Google Scholar 

  79. Al-Gholam MA, Nooh HZ, El-Mehi AE, El-Barbary Ael M, Fokar AZ (2016) Protective effect of rosemary on acrylamide motor neurotoxicity in spinal cord of rat offspring: postnatal follow-up study. Anat Cell Biol 49:34–49

    Article  PubMed  PubMed Central  Google Scholar 

  80. Elgholam M, Elbarbary A-M, Zolfakar A, Nooh H, El-Mehi A (2015) The role of rosemary against acrylamide developmental toxicity on the white matter of the rat spinal cord. Menoufia Med J 28:765–773

    Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Vice Chancellor of Research, Mashhad University of Medical Sciences, Mashhad, Iran for financial support. The data reported in this article are part of a Ph.D. thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Hosseinzadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabeshpour, J., Mehri, S., Abnous, K. et al. Neuroprotective Effects of Thymoquinone in Acrylamide-Induced Peripheral Nervous System Toxicity Through MAPKinase and Apoptosis Pathways in Rat. Neurochem Res 44, 1101–1112 (2019). https://doi.org/10.1007/s11064-019-02741-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-019-02741-4

Keywords

Navigation