Log in

Pathophysiology and Treatment of Canavan Disease

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Matalon R, Michals K, Sebesta D, Deanching M, Gashkoff P, Casanova J (1988) Aspartoacylase deficiency and N-acetylaspartic aciduria in patients with Canavan disease. Am J Med Genet 29:463–471

    CAS  PubMed  Google Scholar 

  2. Mendes MI, Smith DE, Pop A et al (2017) Clinically distinct phenotypes of Canavan disease correlate with residual aspartoacylase enzyme activity. Hum Mutat 38:524–531

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hoshino H, Kubota M (2014) Canavan disease: clinical features and recent advances in research. Pediatr Int 56:477–485

    CAS  PubMed  Google Scholar 

  4. Madhavarao CM, Moffett JR, Moore RA, Viola RE, Namboodiri MA, Jacobowitz DM (2004) Immunohistochemical localization of aspartoacylase in the rate central nervous system. J Comp Neurol 472:318–329

    CAS  PubMed  Google Scholar 

  5. Feigenbaum A, Moore R, Clarke J, Hewson S, Chitayat D, Ray PN, Stockley TL (2004) Canavan disease: carrier-frequency determination in the Ashkenazi Jewish population and development of a novel molecular diagnostic assay. Am J Med Genet 124A:142–147

    PubMed  Google Scholar 

  6. Rivas MA, Avila BE, Koskela J et al (2018) Insights into the genetic epidemiology of Crohn’s and rare diseases in the Ashkenazi Jewish population. PLoS Genet 14:e1007229

    Google Scholar 

  7. Jellinger K, Seitelberger F (1969) Juvenile form of spongy degeneration of the CNS. Acta Neuropath (Berl) 13:276–281

    CAS  Google Scholar 

  8. Janson CG, Kolodny EH, Zeng B-J et al (2006) Mild-onset presentation of Canavan’s disease associated with novel G212A point mutation in aspartoacylase gene. Ann Neurol 59:428–431

    CAS  PubMed  Google Scholar 

  9. Leone P, Shera D, McPhee SW et al (2012) Long-term follow-up after gene therapy for Canavan disase. Science Trans Med 4:165ra163

    Google Scholar 

  10. Janson CG, McPhee SWJ, Francis J et al (2006) Natural history of Canavan disease revealed by proton magnetic resonance spectroscopy (1J-MRS) and diffusion-weighted MRI. Neuropediatrics 37:209–221

    CAS  PubMed  Google Scholar 

  11. Gambetti P, Mellman WJ, Gonatoas NK (1969) Familial spongy degeneration of the central nervous system (van Bogaert–Bertrand disease). an ultrastructural study. Acta Neuropathol 12:103–115

    CAS  PubMed  Google Scholar 

  12. Adachi M, Schneck L, Cara J, Volk BW (1973) Spongy degeneration of the central nervous system (van Bogaert and Bertrand type; Canavan disease). A review. Hum Pathol 4:331–347

    CAS  PubMed  Google Scholar 

  13. Mirimanoff P (1976) La dystrophie spongieuse hereditaire des enfants (Canavan van Bogaert–Bertrand). J Neurol Sci 28:159–185

    CAS  PubMed  Google Scholar 

  14. Traka M, Wollmann RI, Cerda SR, Dugas J, Barres BA, Popko B (2008) Nur7 is a nonsense mutation in the mouse aspartoacylase gene that causes spongy degeneration of the CNS. J Neurosci 28:11537–11549

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Guo F, Bannerman P, Mills Ko E, Miers L, Xu J, Burns T, Li S, Freeman E, McDonough JA, Pleasure D (2015) Ablating N-acetylaspartate prevents leukodystrophy in a Canavan disease model. Ann Neurol 77:884–888

    CAS  PubMed  Google Scholar 

  16. Maier H, Wang-Eckhardt L, Hartmann D, Gieselmann V, Eckhardt M (2015) N-acetylaspartate synthase deficiency corrects the myelin phenotype in a Canavan disease mouse model but does not affect survival time. J Neurosci 35:14501–14516

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Sohn J, Bannerman P, Guo F, Burns T, Miers L, Croteau C, Singhal NK, McDonough JA, Pleasure D (2017) Suppressing N-acetyl-L-aspartate synthesis prevents loss of neurons in amurine model of Canavan leukodystrophy. J Neurosci 37:413–421

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bannerman P, Guo F, Chechneva O, Burns T, Zhu X, Wang Y, Kim B, Singhal NK, McDonough JA, Pleasure D (2018) Brain Nat8l knockdown suppresses spongiform leukodystrophy in an aspartoacylase-deficient Canavan disease mouse model. Mol Ther 26:793–800

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Madhavarao CN, Arun P, Moffett JR, Szacs S, Surendram S, Matalon R, Garbern J, Hristova D, Johnson A, Jiang W, Namboodiri MA (2005) Defective N-acetylaspartate catabolism reduces brain acetate levels and myelin lipid synthesis in Canavan’s disease. Proc Natl Acad Sci USA 102:5221–5226

    CAS  PubMed  Google Scholar 

  20. Francis JS, Wojtas L, Markov V, Gray SJ, McCown TJ, Samulski RJ, Bilaniuk LT, Wang DJ, DeVivo DC, Janson CG, Leone P (2016) N-acetylaspartate supports the energetic demands of developmental myelination via oligodendroglia aspartoacylase. Neurobiol Dis 96:323–334

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Baslow MH, Guilfoyle DN (2013) Canavan disease, a rare early-onset human spongiform leukodystrophy: insights into its genesis and possible clinical interventions. Biochimie 95:946–956

    CAS  PubMed  Google Scholar 

  22. Burri R, Steffen C, Herschkowitz N (1991) N-acetyl-L-aspartate is a major source of acetyl groups for lipid synthesis during rat brain development. Dev Neurosci 13:403–411

    CAS  PubMed  Google Scholar 

  23. Wiami E, Tyteca D, Pierrot N et al (2009) Molecular identification of aspartate N-acetyltransferase and its mutation in hypacetylaspartia. Biochem J 425:127–136

    Google Scholar 

  24. Ariyannur PS, Moffett JR, Manickam P, Pattabiraman N, Arun P, Nitta A, Nabeshima T, Madhavarao CN, Namboodiri AM (2010) Methamphetamine-induced neuronal protein NAT8L is the NAA biosynthetic enzyme: implications for specialized acetyl coenzyme A metabolism in the CNS. Brain Res 1335:1–13

    CAS  PubMed  Google Scholar 

  25. Singhal NK, Huang H, Li S, Clements R, Gadd J, Daniels A, Kooijman EE, Bannerman P, Burns T, Guo F, Pleasure D, Freeman E, Shriver L, McDonough J (2017) The neuronal metabolite NAA regulates histone H3 methylation in oligodendrocytes and myelin lipid composition. Exp Brain Res 235:279–292

    CAS  PubMed  Google Scholar 

  26. Sumi K, Uno K, Noike H, Tomohiro T, Hatanaka Y, Furukawa-Hibi Y, Nabeshima T, Miyamoto Y, Nitta A (2017) Behavioral impairment in SHATI/NAT8L knockout mice via dysfunction of myelination development. Sci Rep 7:16872

    PubMed  PubMed Central  Google Scholar 

  27. Neale JH, Olsczewski RT, Zuo D, Jancrura KJ, Profaci CP, Lavin KM, Madore JC, Bzdega T (2011) Advances in understanding the peptide neurotransmitter NAAG and appearance of a new member of the NAAG neuropeptide family. J Neurochem 118:490–496

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kolodziejczyk K, Hamilton NB, Wade A, Karadottir R, Attwell D (2009) The effect of N-acetyl-aspartyl-glutamate and N-acetyl-aspartate on white matter oligodendrocytes. Brain 132:1496–1508

    PubMed  PubMed Central  Google Scholar 

  29. Appu AP, Moffett JR, Arun P, Moran S, Nambiar V, Krishnan JKS, Puthillathu N, Namboodiri AMA (2017) Increasing N-acetylaspartate in the brain during postnatal myelination does not cause the CNS pathologies of Canavan disease. Front Mol Neurosci Jun 2:10:161

    Google Scholar 

  30. Von Jonquieres G, Spencer ZHT, Rowlands BD et al (2018) Uncoupling N-acetylaspartate from brain pathology: implications for Canavan disease gene therapy. Acta Neuropathol 135:95–113

    Google Scholar 

  31. Fujita T, Katsukawa H, Yodoya E, Wada M, Shimada A, Okada N, Yamamoto A, Ganapathy V (2005) Transport characteristics of N-acetyl-L-aspartate in rat astrocytes: involvement of sodium-coupledhigh-affinity carboxylate transporter NaC3/NaDC3-mediated transport system. J Neurochem 93:706–714

    CAS  PubMed  Google Scholar 

  32. Shannon RJ, van der Heide S, Carter EL, Jalloh I, Menon DK, Hutchinson PJ, Carpenter KLH (2016) Extracellular N-acetylaspartate in human traumatic brain injury. J Neurotrauma 33:319–329

    PubMed  PubMed Central  Google Scholar 

  33. Tress O, Maglione M, May D et al (2012) Panglial gap junctional communication is essential for maintenance of myelin in the CNS. J Neurosci 32:7499–7518

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Tress O, Maglione M, Zlomuzica A, May D, Dicke N, Degen J, Dere E, Kettenmann H, Hartmann D, Willecke K (2011) Pathologic and phenotypic alterations in a mouse expressing a Connexin47 missense mutation that causes Pelizaeus-Merzbacher-like disease in humans. PLoS Genet 7:e1002146

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Lopez-Hernandez T, Sirisi S, Capdevila-Nortes X et al (2011) Molecular mechanisms of MLC1 and GLIALCAM mutations in megalencephalic leukodystrophy with subcortical cysts. Hum Mol Genet 23:5069–5086

    Google Scholar 

  36. Ahmed SS, Li H, Cao C et al (2013) A single intravenous rAAV injection as late as P20 achieves efficacious and sustained CNS gene therapy in Canavan mice. Mol Ther 21:2136–2147

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Gessler DJ, Li D, Xu H, Su Q, Sanmiguel J, Tuncer S, Moore C, King J, Matalon R, Gao G (2017) Redirecting N-acetylaspartate metabolism in the central nervous system normalizes myelination and rescues Canavan disease. JCI Insight 2:e90807

    PubMed  PubMed Central  Google Scholar 

  38. Sommer A, Sass JO (2012) Expression of aspartoacylase (ASPA) and Canavan disease. Gene 505:206–210

    CAS  PubMed  Google Scholar 

  39. Gautier EL, Ivanov S, Williams JW et al (2014) Gata6 regulates aspartoacylase expression in resident peritoneal macrophages and controls their survival. J Exp Med 211:1525–1531

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ahmed SS, Schattgen SA, Frakes AE et al (2016) rAAV gene therapy in a Canavan’s disease mouse model reveals immune impairments and an extended pathology beyond the central nervous system. Mol Ther 24:1030–1041

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Assad M, Janson C, Wang DJ, Suri N, Bilaniuk L, Leone P (2010) Lithium citrate reduces excessive intra-cerebral N-acetyl aspartate in Canavan disease. Eur J Paediatr Neruol 14:354–359

    Google Scholar 

  42. Thangavelu B, Mutthamsetty V, Wang Q, Viola RE (2017) Design and optimization of aspartate N-acetyltransferase inhibitors for the potential treatment of Canavan disease. Bioorg Med Chem 25:870–885

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Shriners Hospitals Grant 439043; NIH 1R21NS096004-01; and the Dana Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Pleasure.

Additional information

Special issue: In honor of Vittorio Gallo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pleasure, D., Guo, F., Chechneva, O. et al. Pathophysiology and Treatment of Canavan Disease. Neurochem Res 45, 561–565 (2020). https://doi.org/10.1007/s11064-018-2693-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-018-2693-6

Keywords

Navigation