Log in

Glial Metabolism of Isoleucine

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Isoleucine, together with leucine and valine, constitutes the group of branched-chain amino acids (BCAAs). BCAAs are transported from the blood into the brain parenchyma, where they can serve several distinct functions. Since brain tissue is known to oxidatively metabolize BCAAs to CO2, they are considered as fuel material in brain energy metabolism. Also, in the case of leucine, cultured astrocytes have been reported to be able to completely oxidize BCAA. While the metabolism of leucine by astroglia-rich primary culture (APC) has already been studied in detail, the metabolic fates of isoleucine and valine in these cells remained to be identified. Therefore, in the present study an NMR analysis was performed of 13C-labelled metabolites generated in the catabolism of [U-13C]Ile by astrocytes and released by them into the incubation medium. APC potently removed isoleucine from the medium and metabolized it. The major isoleucine metabolites released from APC are 2-oxo-3-methylvalerate, 2-methylbutyrate, 3-hydroxy-2-methylbutyrate and propionate. To a lesser extent, APC generate and release also [2,3-13C]glutamine, [4,5-13C]glutamine and 13C-labelled isotopomers of lactate and citrate. These results show that APC can release into the extracellular milieu catabolites and several TCA cycle dependent metabolites resulting from the degradation of isoleucine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Smith QR, Momma S, Aoyagi M et al (1987) Kinetics of neutral amino acid transport across the blood-brain barrier. J Neurochem 49:1651–1658. doi:10.1111/j.1471-4159.1987.tb01039.x

    Article  PubMed  CAS  Google Scholar 

  2. Yudkoff M (1997) Brain metabolism of branched-chain amino acids. Glia 21:92–98. doi :10.1002/(SICI)1098-1136(199709)21:1<92::AID-GLIA10>3.0.CO;2-W

    Article  PubMed  CAS  Google Scholar 

  3. Murín R, Hamprecht B (2008) Metabolic and regulatory roles of leucine in neural cells. Neurochem Res 33:279–284. doi:10.1007/s11064-007-9444-4

    Article  PubMed  CAS  Google Scholar 

  4. Yudkoff M, Daikhin Y, Nelson D et al (1996) Neuronal metabolism of branched-chain amino acids: flux through the aminotransferase pathway in synaptosomes. J Neurochem 66:2136–2145

    PubMed  CAS  Google Scholar 

  5. Bixel MG, Hutson SM, Hamprecht B (1997) Cellular distribution of branched-chain amino acid aminotransferase isoenzymes among rat brain glial cells in culture. J Histochem Cytochem 45:685–694

    PubMed  CAS  Google Scholar 

  6. Swaiman KF, Milstein JM (1965) Oxidation of leucine, isoleucine and related ketoacids in develo** rabbit brain. J Neurochem 12:981–986. doi:10.1111/j.1471-4159.1965.tb10257.x

    Article  PubMed  CAS  Google Scholar 

  7. Murthy CR, Hertz L (1987) Acute effect of ammonia on branched-chain amino acid oxidation and incorporation into proteins in astrocytes and in neurons in primary cultures. J Neurochem 49:735–741. doi:10.1111/j.1471-4159.1987.tb00955.x

    Article  PubMed  CAS  Google Scholar 

  8. Honegger P, Braissant O, Henry H et al (2002) Alteration of amino acid metabolism in neuronal aggregate cultures exposed to hypoglycaemic conditions. J Neurochem 81:1141–1151. doi:10.1046/j.1471-4159.2002.00888.x

    Article  PubMed  CAS  Google Scholar 

  9. Bixel MG, Hamprecht B (1995) Generation of ketone bodies from leucine by cultured astroglial cells. J Neurochem 65:2450–2461

    PubMed  CAS  Google Scholar 

  10. Kabara JJ, Okita GT (1961) Brain cholesterol: biosynthesis with selected precursors in vivo. J Neurochem 7:298–304. doi:10.1111/j.1471-4159.1961.tb13516.x

    Article  PubMed  CAS  Google Scholar 

  11. Patel MS, Owen OE (1978) The metabolism of leucine by develo** rat brain: effect of leucine and 2-oxo-4-methylvalerate on lipid synthesis from glucose and ketone bodies. J Neurochem 30:775–782. doi:10.1111/j.1471-4159.1978.tb10784.x

    Article  PubMed  CAS  Google Scholar 

  12. Roberts S, Morelos BS (1965) Regulation of cerebral metabolism of amino acids. IV. Influence of amino acid levels on leucine uptake, utilization and incorporation into protein in vivo. J Neurochem 12:373–387. doi:10.1111/j.1471-4159.1965.tb04238.x

    Article  PubMed  CAS  Google Scholar 

  13. Berl S, Frigyesi TL (1968) Metabolism of [14C]leucine and [14C]acetate in sensorimotor cortex, thalamus, caudate nucleus and cerebellum of the cat. J Neurochem 15:965–970. doi:10.1111/j.1471-4159.1968.tb11639.x

    Article  PubMed  CAS  Google Scholar 

  14. Sweetman L, Williams JC (2001) Branched chain organic acidurias. In: Scriver C, Beaudet A, Sly W (eds) The metabolic and molecular basis of inherited disease. McGraw-Hill, Philadelphia, pp 2125–2163

    Google Scholar 

  15. Wallin R, Hall TR, Hutson SM (1990) Purification of branched chain aminotransferase from rat heart mitochondria. J Biol Chem 265:6019–6024

    PubMed  CAS  Google Scholar 

  16. Hall TR, Wallin R, Reinhart GD et al (1993) Branched chain aminotransferase isoenzymes. Purification and characterization of the rat brain isoenzyme. J Biol Chem 268:3092–3098

    PubMed  CAS  Google Scholar 

  17. Bixel M, Shimomura Y, Hutson S et al (2001) Distribution of key enzymes of branched-chain amino acid metabolism in glial and neuronal cells in culture. J Histochem Cytochem 49:407–418

    PubMed  CAS  Google Scholar 

  18. Garcia-Espinosa MA, Wallin R, Hutson SM et al (2007) Widespread neuronal expression of branched-chain aminotransferase in the CNS: implications for leucine/glutamate metabolism and for signaling by amino acids. J Neurochem 100:1458–1468. doi:10.1111/j.1471-4159.2006.04244.x

    PubMed  CAS  Google Scholar 

  19. Pettit FH, Yeaman SJ, Reed LJ (1978) Purification and characterization of branched chain alpha-keto acid dehydrogenase complex of bovine kidney. Proc Natl Acad Sci USA 75:4881–4885. doi:10.1073/pnas.75.10.4881

    Article  PubMed  CAS  Google Scholar 

  20. Suryawan A, Hawes JW, Harris RA et al (1998) A molecular model of human branched-chain amino acid metabolism. Am J Clin Nutr 68:72–81

    PubMed  CAS  Google Scholar 

  21. Johansen ML, Bak LK, Schousboe A et al (2007) The metabolic role of isoleucine in detoxification of ammonia in cultured mouse neurons and astrocytes. Neurochem Int 50:1042–1051. doi:10.1016/j.neuint.2007.01.009

    Article  PubMed  CAS  Google Scholar 

  22. Nguyen NHT, Morland C, Gonzalez SV et al (2007) Propionate increases neuronal histone acetylation, but is metabolized oxidatively by glia. Relevance for propionic acidemia. J Neurochem 101:806–814. doi:10.1111/j.1471-4159.2006.04397.x

    Article  PubMed  CAS  Google Scholar 

  23. Hamprecht B, Dringen R (1995) Energy metabolism. In: Kettenmann H, Ranson B (eds) Neuroglia. Oxford University Press, New York, pp 473–487

    Google Scholar 

  24. Bixel MG, Engelmann J, Willker W et al (2004) Metabolism of [U-(13)C]leucine in cultured astroglial cells. Neurochem Res 29:2057–2067. doi:10.1007/s11064-004-6879-8

    Article  PubMed  CAS  Google Scholar 

  25. Hamprecht B, Löffler F (1985) Primary glial cultures as a model for studying hormone action. Methods Enzymol 109:341–345. doi:10.1016/0076-6879(85)09097-8

    Article  PubMed  CAS  Google Scholar 

  26. Vassault A (1983) Lactate dehydrogenase: UV-method with pyruvate and NADH. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 3. Verlag Chemie, Weinheim, pp 118–126

    Google Scholar 

  27. Dringen R, Hamprecht B (1996) Glutathione content as an indicator for the presence of metabolic pathways of amino acids in astroglial cultures. J Neurochem 67:1375–1382

    PubMed  CAS  Google Scholar 

  28. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  29. Martin M, Portais JC, Labousse J et al (1993) [1-¹³C]glucose metabolism in rat cerebellar granule cells and astrocytes in primary culture. Evaluation of flux parameters by ¹³C- and ¹H-NMR spectroscopy. Eur J Biochem 217:617–625. doi:10.1111/j.1432-1033.1993.tb18284.x

    Article  PubMed  CAS  Google Scholar 

  30. Kupće E, Freeman R (1995) Stretched adiabatic pulses for broadband SPMn inversion. J Magn Reson A117:246–256

    Google Scholar 

  31. Willker W, Engelmann J, Brand A et al (1996) Metabolite identification in cell extracts and culture media by proton-detected 2D-H, C-NMR spectroscopy. J Magn Reson A 2:21–32

    Google Scholar 

  32. Hansson E, Sellstroem A, Perlsson LI et al (1980) Brain primary culture A characterization. Brain Res 188:233–246. doi:10.1016/0006-8993(80)90570-3

    Article  PubMed  CAS  Google Scholar 

  33. Reinhart PH, Pfeiffer B, Spengler S et al (1990) Purification of glycogen phosphorylase from bovine brain and immunocytochemical examination of rat glial primary cultures using monoclonal antibodies raised against this enzyme. J Neurochem 54:1474–1483. doi:10.1111/j.1471-4159.1990.tb01194.x

    Article  PubMed  CAS  Google Scholar 

  34. Martinez-Hernandez KP, Bell KP, Norenberg ND (1977) Glutamine synthetase. Glial localization in brain. Science 195:1356–1358. doi:10.1126/science.14400

    Article  PubMed  CAS  Google Scholar 

  35. Hallermayer K, Hamprecht B (1984) Cellular heterogeneity in primary cultures of brain cells revealed by immunocytochemical localization of glutamine synthetase. Brain Res 295:1–11. doi:10.1016/0006-8993(84)90810-2

    Article  PubMed  CAS  Google Scholar 

  36. Murín R, Schaer A, Kowtharapu BS et al (2008) Expression of 3-hydroxyisobutyrate dehydrogenase in cultured neural cells. J Neurochem 105:1176–1186. doi:10.1111/j.1471-4159.2008.05298.x

    Article  PubMed  CAS  Google Scholar 

  37. Brand A, Leibfritz D, Hamprecht B et al (1998) Metabolism of cysteine in astroglial cells: synthesis of hypotaurine and taurine. J Neurochem 71:827–832

    PubMed  CAS  Google Scholar 

  38. Verleysdonk S, Martin H, Willker W et al (1999) Rapid uptake and degradation of glycine by astroglial cells in culture: synthesis and release of serine and lactate. Glia 27:239–248. doi :10.1002/(SICI)1098-1136(199909)27:3<239::AID-GLIA5>3.0.CO;2-K

    Article  PubMed  CAS  Google Scholar 

  39. Zwingmann C, Leibfritz D (2003) Regulation of glial metabolism studied by 13C NMR. NMR Biomed 16:370–399. doi:10.1002/nbm.850

    Article  PubMed  CAS  Google Scholar 

  40. Zwingmann C, Leibfritz D (2007) Glial-neuronal shuttle systems. In: Gibson GE, Dienel G (eds) Handbook of neurochemistry and molecular neurobiology. Brain energetics: integration of molecular and cellular processes. Springer, New York, pp 197–238

    Chapter  Google Scholar 

  41. Verleysdonk S, Hamprecht B (2000) Synthesis and release of l-serine by rat astroglia-rich primary cultures. Glia 30:19–26. doi :10.1002/(SICI)1098-1136(200003)30:1<19::AID-GLIA3>3.0.CO;2-3

    Article  PubMed  CAS  Google Scholar 

  42. Yudkoff M, Daikhin Y, Lin ZP et al (1994) Interrelationships of leucine and glutamate metabolism in cultured astrocytes. J Neurochem 62:1192–1202

    Article  PubMed  CAS  Google Scholar 

  43. Bröer S, Rahman B, Pellegri G et al (1997) Comparison of lactate transport in astroglial cells and monocarboxylate transporter 1 (MCT 1) expressing Xenopus laevis oocytes. Expression of two different monocarboxylate transporters in astroglial cells and neurons. J Biol Chem 272:30096–30102. doi:10.1074/jbc.272.48.30096

    Article  PubMed  Google Scholar 

  44. Pierre K, Pellerin L (2005) Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J Neurochem 94:1–14. doi:10.1111/j.1471-4159.2005.03168.x

    Article  PubMed  CAS  Google Scholar 

  45. Deodato F, Boenzi S, Santorelli FM et al (2006) Methylmalonic and propionic aciduria. Am J Med Genet C Semin Med Genet 142C:104–112. doi:10.1002/ajmg.c.30090

    Article  PubMed  CAS  Google Scholar 

  46. Rodríguez-Pombo P, Sweetman L, Ugarte M (1992) Primary cultures of astrocytes from rat as a model for biotin deficiency in nervous tissue. Mol Chem Neuropathol 16:33–44

    Article  PubMed  Google Scholar 

  47. Chandler CS, Ballard FJ (1985) Distribution and degradation of biotin-containing carboxylases in human cell lines. Biochem J 232:385–393

    PubMed  CAS  Google Scholar 

  48. Daum RS, Scriver CR, Mamer OA et al (1973) An inherited disorder of isoleucine catabolism causing accumulation of alpha-methylacetoacetate and alpha-methyl-beta-hydroxybutyrate, and intermittent metabolic acidosis. Pediatr Res 7:149–160. doi:10.1203/00006450-197303000-00007

    Article  PubMed  CAS  Google Scholar 

  49. Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA 91:10625–10629. doi:10.1073/pnas.91.22.10625

    Article  PubMed  CAS  Google Scholar 

  50. Kao-Jen J, Wilson JE (1980) Localization of hexokinase in neural tissue: electron microscopic studies of rat cerebellar cortex. J Neurochem 35:667–678. doi:10.1111/j.1471-4159.1980.tb03706.x

    Article  PubMed  CAS  Google Scholar 

  51. Snyder CD, Wilson JE (1983) Relative levels of hexokinase in isolated neuronal, astrocytic, and oligodendroglial fractions from rat brain. J Neurochem 40:1178–1181. doi:10.1111/j.1471-4159.1983.tb08111.x

    Article  PubMed  CAS  Google Scholar 

  52. Murín R, Verleysdonk S, Rapp M et al (2006) Immunocytochemical localization of 3-methylcrotonyl-CoA carboxylase in cultured ependymal, microglial and oligodendroglial cells. J Neurochem 97:1393–1402. doi:10.1111/j.1471-4159.2006.03819.x

    Article  PubMed  CAS  Google Scholar 

  53. Abood LG, Geiger A (1955) Breakdown of proteins and lipids during glucose-free perfusion of the cat’s brain. Am J Physiol 182:557–560

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors should like to acknowledge some preliminary experiments carried out by Krešimir Mikić.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radovan Murín.

Additional information

Special issue article in honor of Dr. George DeVries.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murín, R., Mohammadi, G., Leibfritz, D. et al. Glial Metabolism of Isoleucine. Neurochem Res 34, 194–204 (2009). https://doi.org/10.1007/s11064-008-9840-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9840-4

Keywords

Navigation