Log in

Synaptic Vesicle-bound Pyruvate Kinase can Support Vesicular Glutamate Uptake

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Glucose metabolism is essential for normal brain function and plays a vital role in synaptic transmission. Recent evidence suggests that ATP synthesized locally by glycolysis, particularly via glyceraldehyde 3-phosphate dehydrogenase/3-phosphoglycerate kinase, is critical for synaptic transmission. We present evidence that ATP generated by synaptic vesicle-associated pyruvate kinase is harnessed to transport glutamate into synaptic vesicles. Isolated synaptic vesicles incorporated [3H]glutamate in the presence of phosphoenolpyruvate (PEP) and ADP. Pyruvate kinase activators and inhibitors stimulated and reduced PEP/ADP-dependent glutamate uptake, respectively. Membrane potential was also formed in the presence of pyruvate kinase activators. “ATP-trap**” experiments using hexokinase and glucose suggest that ATP produced by vesicle-associated pyruvate kinase is more readily used than exogenously added ATP. Other neurotransmitters such as GABA, dopamine, and serotonin were also taken up into crude synaptic vesicles in a PEP/ADP-dependent manner. The possibility that ATP locally generated by glycolysis supports vesicular accumulation of neurotransmitters is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ACPD:

1-Aminocyclopentane-1,3-dicarboxylic acid

Cl-PEP:

3-Chlorophosphoenolpyruvate

DTT:

Dithiothreitol

FCCP:

Carbonyl cyanide p-(trifluoromethoxy)-phenylhydrazone

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

PEP:

Phosphoenolpyruvate

3-PGK:

3-Phosphoglycerate kinase

SDS:

Sodium dodecyl sulfate

V-ATPase:

V-type proton-pump ATPase

VGLUT:

Vesicular glutamate transporter

References

  1. Sokoloff L (1977) Relation between physiological function and energy metabolism in the central nervous system. J Neurochem 29:13–26. doi:10.1111/j.1471-4159.1977.tb03919.x

    Article  CAS  PubMed  Google Scholar 

  2. Fox PT, Raichle ME, Mintun MA et al (1988) Nonoxidative glucose consumption during focal physiologic neural activity. Science 241:462–464. doi:10.1126/science.3260686

    Article  CAS  PubMed  Google Scholar 

  3. McNay EC, Fries TM, Gold PE (2000) Decreases in rat extracellular hippocampal glucose concentration associated with cognitive demand during a spatial task. Proc Natl Acad Sci USA 97:2881–2885. doi:10.1073/pnas.050583697

    Article  CAS  PubMed  Google Scholar 

  4. Sommerfield AJ, Deary IJ, McAulay V et al (2003) Moderate hypoglycemia impairs multiple memory functions in healthy adults. Neuropsychol 17:125–132. doi:10.1037/0894-4105.17.1.125

    Article  Google Scholar 

  5. Siesjo BK (1978) Brain energy metabolism. John Wiley & Sons, Inc., New York

    Google Scholar 

  6. Lewis LD, Ljunggren B, Ratcheson RA et al (1974) Cerebral energy state in insulin-induced hypoglycemia, related to blood glucose and to EEG. J Neurochem 23:673–679. doi:10.1111/j.1471-4159.1974.tb04390.x

    Article  CAS  PubMed  Google Scholar 

  7. Dirks B, Hanke H, Krieglstein J et al (1980) Studies on the linkage of energy metabolism and activity in the isolated perfused rat brain. J Neurochem 35:311–317. doi:10.1111/j.1471-4159.1980.tb06266.x

    Article  CAS  PubMed  Google Scholar 

  8. Ghajar JBG, Plum F, Duffy TE (1982) Cerebral oxidative metabolism and blood flow during acute hypoglycemia and recovery in unanesthetized rats. J Neurochem 38:397–409. doi:10.1111/j.1471-4159.1982.tb08643.x

    Article  CAS  PubMed  Google Scholar 

  9. Bachelard HS, Cox DWG, Drower J (1984) Sensitivity of guinea-pig hippocampal granule cell field potentials to hexoses in vitro: an effect on cell excitability? J Physiol 352:91–102

    CAS  PubMed  Google Scholar 

  10. Fleck MW, Henze DA, Barrionuevo G et al (1993) Aspartate and glutamate mediate excitatory synaptic transmission in area CA1 of the hippocampus. J Neurosci 13:3944–3955

    CAS  PubMed  Google Scholar 

  11. Yamane K, Yokono K, Okada Y (2000) Anaerobic glycolysis is crucial for the maintenance of neural activity in guinea pig hippocampal slices. J Neurosci Methods 103:163–171. doi:10.1016/S0165-0270(00)00312-5

    Article  CAS  PubMed  Google Scholar 

  12. Okada Y, Lipton P (2007) Glucose, oxidative energy metabolism, and neural function in brian slices-glycolysis plays a key role in neural activity. In: Laitha A, Gibson G, Dienel GA (eds) Handbook of neurochemistry and molecular neurobiology.Brain energetics. Integration of molecular and cellular processes, 3rd edn. Springer-Verlag, Heidelberg, pp 17–40

    Google Scholar 

  13. Cox DWG, Bachelard HS (1982) Attenuation of evoked field potentials from dentate granule cells by low glucose, pyruvate, malate, and sodium fluoride. Brain Res 239:527–534. doi:10.1016/0006-8993(82)90527-3

    Article  CAS  PubMed  Google Scholar 

  14. Cox DWG, Morris PG, Feeney J et al (1983) 31P-n.m.r. studies on cerebral energy metabolism under conditions of hypoglycaemia and hypoxia in vitro. Biochem J 212:365–370

    CAS  PubMed  Google Scholar 

  15. Kanatani T, Mizuno K, Okada Y (1995) Effects of glycolytic metabolites on preservation of high energy phosphate level and synaptic transmission in the granule cells of guinea pig hippocampal slices. Experientia 51:213–216. doi:10.1007/BF01931098

    Article  CAS  PubMed  Google Scholar 

  16. Ikemoto A, Bole DG, Ueda T (2003) Glycolysis and glutamate accumulation into synaptic vesicles: role of glyceraldehyde phosphate dehydrogenase and 3-phosphoglycerate kinase. J Biol Chem 278:5929–5930. doi:10.1074/jbc.M211617200

    Article  CAS  PubMed  Google Scholar 

  17. Collingridge GL, Bliss TVP (1987) NMDA receptors––their role in long-term potentiation. Trends Neurosci 10:288–293. doi:10.1016/0166-2236(87)90175-5

    Article  CAS  Google Scholar 

  18. Cotman CW, Monaghan DT, Ganong AH (1988) Excitatory amino acid neurotransmission: NMDA receptors and Hebb-type synaptic plasticity. Annu Rev Neurosci 11:61–80. doi:10.1146/annurev.ne.11.030188.000425

    Article  CAS  PubMed  Google Scholar 

  19. Watkins JC, Evans RH (1981) Excitatory amino acid transmitters. Annu Rev Pharmacol Toxicol 21:165–204. doi:10.1146/annurev.pa.21.040181.001121

    Article  CAS  PubMed  Google Scholar 

  20. Cotman CW, Foster A, Lanthorn T (1981) An overview of glutamate as a neurotransmitter. In: DiChiara G, Gessa GL (eds) Glutamate as a neurotransmitter. Raven Press, New York, pp 1–27

    Google Scholar 

  21. Fonnum F (1984) Glutamate: a neurotransmitter in mammalian brain. J Neurochem 42:1–11. doi:10.1111/j.1471-4159.1984.tb09689.x

    Article  CAS  PubMed  Google Scholar 

  22. Ueda T (1986) Glutamate transport in the synaptic vesicle. In: Roberts PJ, Storm-Mathisen J, Bradford HF (eds) Excitatory amino acids. Macmillan, London, pp 173–195

    Google Scholar 

  23. Nicholls DG (1989) Release of glutamate, aspartate, and γ-aminobutyric acid from isolated nerve terminals. J Neurochem 52:331–341. doi:10.1111/j.1471-4159.1989.tb09126.x

    Article  CAS  PubMed  Google Scholar 

  24. Maycox PR, Hell JW, Jahn R (1990) Amino acid neurotransmission: spotlight on synaptic vesicles. Trends Neurosci 13:83–87. doi:10.1016/0166-2236(90)90178-D

    Article  CAS  PubMed  Google Scholar 

  25. Özkan ED, Ueda T (1998) Glutamate transport and storage in synaptic vesicles. Jpn J Pharmacol 77:1–10. doi:10.1254/jjp.77.1

    Article  PubMed  Google Scholar 

  26. Reimer RJ, Fremeau RT, Bellocchio EE et al (2001) The essence of excitation. Curr Opin Cell Biol 13:417–421. doi:10.1016/S0955-0674(00)00230-1

    Article  CAS  PubMed  Google Scholar 

  27. Takamori S, Rhee JS, Rosenmund C et al (2000) Identification of a vesicular glutamate transporter that defines a glutamatargic phenotype in neurons. Nature 407:189–194. doi:10.1038/35025070

    Article  CAS  PubMed  Google Scholar 

  28. Otis TS (2001) Vesicular glutamate transporters incognito. Neuron 29:11–14. doi:10.1016/S0896-6273(01)00176-3

    Article  CAS  PubMed  Google Scholar 

  29. Naito S, Ueda T (1983) Adenosine triphosphate-dependent uptake of glutamate into protein I-associated synaptic vesicles. J Biol Chem 258:696–699

    CAS  PubMed  Google Scholar 

  30. Naito S, Ueda T (1985) Characterization of glutamate uptake into synaptic vesicles. J Neurochem 44:99–109. doi:10.1111/j.1471-4159.1985.tb07118.x

    Article  CAS  PubMed  Google Scholar 

  31. Maycox PR, Deckwerth T, Hell JW et al (1988) Glutamate uptake by brain synaptic vesicles. J Biol Chem 263:15423–15428

    CAS  PubMed  Google Scholar 

  32. Hell JW, Maycox PR, Jahn R (1990) Energy dependence and functional reconstitution of the γ-aminobutyric acid carrier from synaptic vesicles. J Biol Chem 265:2111–2117

    CAS  PubMed  Google Scholar 

  33. Tabb JS, Ueda T (1991) Phylogenetic studies on the synaptic vesicle glutamate transport system. J Neurosci 11:1822–1828

    CAS  PubMed  Google Scholar 

  34. Tabb JS, Kish PE, Van Dyke R et al (1992) Glutamate transport into synaptic vesicles: roles of membrane potential, pH gradient, and intravesicular pH. J Biol Chem 267:15412–15418

    CAS  PubMed  Google Scholar 

  35. Wolosker H, de Souza DO, de Meis L (1996) Regulation of glutamate transport into synaptic vesicles by chloride and proton gradient. J Biol Chem 271:11726–11731. doi:10.1074/jbc.271.20.11726

    Article  CAS  PubMed  Google Scholar 

  36. Bellocchio EE, Reimer RJ, Fremeau RT et al (2000) Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter. Science 289:957–960. doi:10.1126/science.289.5481.957

    Article  CAS  PubMed  Google Scholar 

  37. Shepherd GM, Harris KM (1998) Three-dimensional structure and composition of CA3 → CA1 axons in rat hippocampal slices: implications for presynaptic connectivity and compartmentalization. J Neurosci 18:8300–8310

    CAS  PubMed  Google Scholar 

  38. Buckley K, Kelly RB (1985) Identification of a transmembrane glycoprotein specific for secretory vesicles of neural and endocrine cells. J Cell Biol 100:1284–1294. doi:10.1083/jcb.100.4.1284

    Article  CAS  PubMed  Google Scholar 

  39. Garcia-Alles LF, Erni B (2002) Synthesis of phosphoenol pyruvate (PEP) analogues and evaluation as inhibitors of PEP-utilizing enzymes. Eur J Biochem 269:3226–3236. doi:10.1046/j.1432-1033.2002.02995.x

    Article  CAS  PubMed  Google Scholar 

  40. Kish PE, Ueda T (1989) Glutamate accumulation into synaptic vesicles. Methods Enzymol 174:9–25. doi:10.1016/0076-6879(89)74005-2

    Article  CAS  PubMed  Google Scholar 

  41. Ueda T, Greengard P, Berzins K et al (1979) Subcellular distribution in cerebral cortex of two proteins phosphorylated by a cAMP-dependent protein kinase. J Cell Biol 83:308–319. doi:10.1083/jcb.83.2.308

    Article  CAS  PubMed  Google Scholar 

  42. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  43. Kochhar S, Mehta PK, Christen P (1989) Assay for aliphatic amino acid decarboxylases by high-performance liquid chromatography. Anal Biochem 179:182–185. doi:10.1016/0003-2697(89)90221-2

    Article  CAS  PubMed  Google Scholar 

  44. Bücher T, Pfleiderer G (1955) Pyruvate kinase from muscle. Methods Enzymol 1:435–440. doi:10.1016/0076-6879(55)01071-9

    Article  Google Scholar 

  45. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  46. Harlow E, Lane D (1988) Antibodies: a laboratory manual. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  47. Ogita K, Hirata K, Bole DG et al (2001) Inhibition of vesicular glutamate storage and exocytotic release by Rose Bengal. J Neurochem 77:34–42

    Article  CAS  PubMed  Google Scholar 

  48. Bellocchio EE, Hu H, Pohorille A et al (1998) The localization of the brain-specific inorganic phosphate transporter suggests a specific presynaptic role in glutamatergic transmission. J Neurosci 18:8648–8659

    CAS  PubMed  Google Scholar 

  49. Fremeau RT Jr, Troyer MD, Pahner I et al (2001) The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31:247–260. doi:10.1016/S0896-6273(01)00344-0

    Article  CAS  PubMed  Google Scholar 

  50. Herzog E, Bellenchi GC, Gras C et al (2001) The existence of a second vesicular glutamate transporter specifies subpopulations of glutamatergic neurons. J Neurosci 21:181

    Google Scholar 

  51. Navone F, Jahn R, Di Gioia G et al (1986) Protein p38: an integral membrane protein specific for small vesicles of neurons and neuroendocrine cells. J Cell Biol 103:2511–2527. doi:10.1083/jcb.103.6.2511

    Article  CAS  PubMed  Google Scholar 

  52. Kayne F (1973) Pyruvate kinase. In: Boyer P (ed) The enzymes, vol 8A. Academic Press, New York, pp 353–382

    Google Scholar 

  53. Bowman EJ, Siebers A, Altendorf K (1988) Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci USA 85:7972–7976. doi:10.1073/pnas.85.21.7972

    Article  CAS  PubMed  Google Scholar 

  54. Fykse EM, Christensen H, Fonnum F (1989) Comparison of the properties of γ-aminobutyric acid and L-glutamate uptake into synaptic vesicles isolated from rat brain. J Neurochem 52:946–951. doi:10.1111/j.1471-4159.1989.tb02546.x

    Article  CAS  PubMed  Google Scholar 

  55. Winter HC, Ueda T (1993) Glutamate uptake system in the presynaptic vesicle: glutamic acid analogs as inhibitors and alternate substrates. Neurochem Res 18:79–85. doi:10.1007/BF00966925

    Article  CAS  PubMed  Google Scholar 

  56. Winter HC, Ueda T (2008) The glutamate uptake system in synaptic vesicles: further characterization of structural requirements for inhibitors and substrates. Neurochem Res 33:223–231. doi:10.1007/s11064-007-9493-8

    Article  CAS  PubMed  Google Scholar 

  57. Xu KY, Zweier JL, Becker LC (1995) Functional coupling between glycolysis and sarcoplasmic reticulum Ca2+ transport. Circ Res 77:88–97

    CAS  PubMed  Google Scholar 

  58. Morciano M, Burre J, Corvey C et al (2005) Immunoisolation of two synaptic vesicle pools from synaptosomes: a proteomics analysis. J Neurochem 95:1732–1745. doi:10.1111/j.1471-4159.2005.03506.x

    Article  CAS  PubMed  Google Scholar 

  59. Takamori S, Holt M, Stenius K et al (2006) Molecular anatomy of a trafficking organelle. Cell 127:831–846. doi:10.1016/j.cell.2006.10.030

    Article  CAS  PubMed  Google Scholar 

  60. Blondeau F, Ritter B, Allaire PD et al (2004) Tandem MS analysis of brain clathrin-coated vesicles reveals their critical involvement in synaptic vesicle recycling. Proc Natl Acad Sci USA 101:3833–3838. doi:10.1073/pnas.0308186101

    Article  CAS  PubMed  Google Scholar 

  61. Pollack GH (2001) Cells, gels, and the engine of life. Ebner & Sons, Seattle

    Google Scholar 

  62. Coughenour HD, Spaulding RS, Thompson CM (2004) The synaptic vesicle proteome: a comparative study in membrane protein identification. Proteomics 4:3141–3155. doi:10.1002/pmic.200300817

    Article  CAS  PubMed  Google Scholar 

  63. Pappas GD, Waxman SG (1972) Synaptic fine structure-morphological correlates of chemical and electrotonic transmission. In: Pappas GD, Purpura DP (eds) Structure and function of synapses. Raven Press, New York, pp 1–43

    Google Scholar 

  64. Pyle JL, Kavalali ET, Piedras-Renteria ES et al (2000) Rapid reuse of readily releasable pool vesicles at hippocampal synapses. Neuron 28:221–231. doi:10.1016/S0896-6273(00)00098-2

    Article  CAS  PubMed  Google Scholar 

  65. Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA 91:10625–10629. doi:10.1073/pnas.91.22.10625

    Article  CAS  PubMed  Google Scholar 

  66. Rikhy R, Ramaswami M, Kirshnan KS (2003) A temperature-sensitive allele of Drosophila sesB reveals acute functions for the mitochondrial adenine nucleotide translocase in synaptic transmission and dynamin regulation. Genetics 165:1243–1253

    CAS  PubMed  Google Scholar 

  67. Hagopian K, Ramsey JJ, Weindruch R (2003) Influence of age and caloric restriction on liver glycolytic enzyme activities and metabolite concentrations in mice. Exp Gerontol 38:253–266. doi:10.1016/S0531-5565(02)00203-6

    Article  CAS  PubMed  Google Scholar 

  68. Poon HF, Shepherd HM, Reed TT et al (2006) Proteomics analysis provides insight into caloric restriction mediated oxidation and expression of brain proteins associated with age-related impaired cellular processes: mitochondrial dysfunction, glutamate dysregulation and impaired protein synthesis. Neurobiol Aging 27:1020–1034. doi:10.1016/j.neurobiolaging.2005.05.014

    Article  CAS  PubMed  Google Scholar 

  69. Ueda T, Ikemoto A (2007) Synaptic vesicle-associated glycolytic ATP-generating enzymes: coupling to neurotransmitter accumulation. In: Laitha A, Gibson GE, Dienel GA (eds) Handbook of neurochemistry and molecular neurobiology. Brain energetics. Integration of cellular and molecular processes, 3rd edn. Springer-Verlag, Heidelberg, pp 241–259

    Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health grants RO1 NS 42200 (TU) and RO1 MH 071384 (TU), and a grant from Taisho Pharmaceutical Co., Ltd. (Tokyo, Japan) (TU). We thank Dr. Bernhard Erni and Dr. Luis Fernando Garcia-Alles (University of Bern, Switzerland) for kindly providing (Z)-Cl-PEP and related compounds, and Dr. Kathleen Buckley (Harvard University) for kindly providing a hybridoma clone for production of an anti-SV2 monoclonal antibody. We are also grateful to Dr. Minor J. Coon (University of Michigan) for kind permission to use the Cary 3E spectrophotometer, to Dr. David G. Bole for assistance in initial glutamate uptake assays and critical reading of the manuscript, and to Ms. Mary Roth for excellent assistance in preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsufumi Ueda.

Additional information

Atsuhiko Ishida—On leave from the Department of Biochemistry, Asahikawa Medical College, Asahikawa, Japan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishida, A., Noda, Y. & Ueda, T. Synaptic Vesicle-bound Pyruvate Kinase can Support Vesicular Glutamate Uptake. Neurochem Res 34, 807–818 (2009). https://doi.org/10.1007/s11064-008-9833-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9833-3

Keywords

Navigation