Log in

Assessment of Oxidative Damage Induced by Acute Doses of Morphine Sulfate in Postnatal and Adult Rat Brain

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The aim of the present study is to evaluate the oxidative damage in rats of different ages. Weaned rats of 25 g and adults of 300 g were used in groups of 6, a single i.p. dose of morphine sulfate of 3, 6 or 12 mg/kg was administered. All animals were sacrificed to measure GSH and 5-HT levels in brain by liquid chromatography, as well as Na+, K+-ATPase and total ATPase enzymatic activity. 5-HT levels decreased significantly (p<0.05) in adult animals that received 3 and 6 mg morphine. Na+, K+-ATPase activity increased significantly (p<0.05) in all groups of weaned animals. In adult animals, Na+, K+-ATPase and total ATPase partially diminished. GSH levels diminished significantly (p<0.05) both in weaned and in adult groups. The results indicate age-induced changes in cellular regulation and biochemical responses to oxidative stress induced by morphine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ossipov MH, Lai J, King T, Vanderah TW, Porreca F (2005) Underlying mechanisms of pronociceptive consequences of prolonged morphine exposure. Biopolymers 80:319–324

    Article  PubMed  CAS  Google Scholar 

  2. Nishikawa K, Tanobe K, Hinohara H, Okamoto T, Saito S, Goto F (2004) Molecular mechanism of morphine tolerance and biological approaches to resolve tolerance. Masui 53:502–507

    PubMed  Google Scholar 

  3. Puppala BL, Matwyshyn G, Bhalla S, Gulati A (2004) Evidence that morphine tolerance may be regulated by endothelin in the neonatal rat. Biol Neonate 86:138–144

    Article  PubMed  CAS  Google Scholar 

  4. Encuesta Nacional de Adicciones, SSA, CONADIC, INPRFM, DGE, INEGI. 2002

  5. Sadee W, Wang D, Bilsky EJ (2005) Basal opioid receptor activity, neutral antagonists, and therapeutic opportunities. Life Sci 76:1427–1437

    Article  PubMed  CAS  Google Scholar 

  6. Garzón J, Rodríguez MM, López FA, Sánchez BP (2005) Activation of μ-opioid receptors transfers control of Gα subunits to the regulator of G-protein signaling RGS9-2. J Biol Chem 280:8951–8960

    Article  PubMed  CAS  Google Scholar 

  7. Hernández RJ (1982) A serotonin agonist-antagonist reversible effect on Na+, K+-ATPase activity in the develo** rat brain. Dev Neurosci 5:326–331

    Article  PubMed  Google Scholar 

  8. Wan-Kan O, Hosein EA (1981) Synaptosomal Na+, K+-ATPase as a membrane probe in studying the in vivo action of morphine. Can J Biochem 59:687–692

    Article  PubMed  CAS  Google Scholar 

  9. Zhou J, Si P, Ruan Z (2001) Primary studies on heroin abuse and injury induced by oxidation and lipoperoxidation. Clin Med J (Engl) 114:297–302

    CAS  Google Scholar 

  10. Goudas LC, Carr DB, Maszczynska I, Marchand JE, Wurm WH et al. (1997) Differential effect of central versus parenteral administration of morphine sulfate on regional concentrations of reduced glutathione in rat brain. Pharmacology 54:92–97

    Article  PubMed  CAS  Google Scholar 

  11. Wu F, Fang YZ, Yang S, Lupton JR, Turner ND (2004) Glutathione metabolism and its implications for health. J Nutr 134:489–492

    PubMed  CAS  Google Scholar 

  12. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxides. Proc Natl Acad Sci USA 87:1629–1624

    Article  Google Scholar 

  13. Lue WM, Su MT, Lin WB, Tao PL (1999) The role of nitric oxide in the development of morphine tolerance in rat hippocampal slices. Eur J Pharmacol 383:129–135

    Article  PubMed  CAS  Google Scholar 

  14. Ebadi M, Govitrapong P, Phansuwan-Pujito P, Nelson F, Reiter RJ (1998) Pineal opioid receptors and analgesic action of melatonin. J Pineal Res 24:193–200

    Article  PubMed  CAS  Google Scholar 

  15. Enrico P, Mura MA, Esposito G, Serra P, Migheli R, et al., (1998) Effect of naloxone on morphine-induced changes in striatal dopamine metabolism and glutamate, ascorbic acid and uric release in freely moving rats. Brain Res 797:94–102

    Article  PubMed  CAS  Google Scholar 

  16. Asensi M, Sastre J, Pallardó FV, Garcia DJ, Estrela JM, Viña J (1994) A high-performance liquid chromatography method for measurement of oxidized glutathione in biological samples. Anal Biochem 217:323–328

    Article  PubMed  CAS  Google Scholar 

  17. Calderón GD, Hernández IJ, Espítia VI, Barragán MG, Juárez OH, et al. (2004) Pyridoxine, regardless of serotonin levels, increases production of 5-hydroxytryptophan in rat brain. Arch Med Res 35:271–274

    Article  CAS  Google Scholar 

  18. Hernández RJ, Chagoya G, (1986) Brain serotonin synthesis and Na+, K+-ATPase activity are increased postnatally after prenatal administration of L-Tryptophan. Dev Brain Res 25:221–226

    Article  Google Scholar 

  19. Bonting SL, Simon KD, Haukins NM (1961) Studies on sodium–potassium-activated adenosine triphosphatase. Arch Biochem Biophys 95:416–423

    Article  PubMed  CAS  Google Scholar 

  20. Castilla-Serna L (1999) Estadística simplificada para la investigación en Ciencias de la Salud 2 Edición. Editorial Trillas México, DF

    Google Scholar 

  21. Fernstrom JD, Wurtman RJ (1972) Brain serotonin content: physiological regulation by plasma neutral amino acids. Science 178:414–416

    Article  PubMed  CAS  Google Scholar 

  22. Hernández RJ (1973) Developmental pattern of the serotonin synthesizing enzyme in the brain of postnatal malnourished rats. Experientia 29:1487–1488

    Article  PubMed  Google Scholar 

  23. Masocha W, González LG, Baeyens JM Agil A (2002) Mechanisms involved in morphine-induced activation of synaptosomal Na+, K+-ATPase. Brain Res 957:311–319

    Article  PubMed  CAS  Google Scholar 

  24. Masocha W, Horvath G, Agil A, Ocaña M, Pozo E, et al. (2003) Role of Na+, K+-ATPase in morphine-induced antinociception. J Pharmacol Exp Ther 306:1122–1128

    Article  PubMed  CAS  Google Scholar 

  25. Brase DA (1990) Is intracellular sodium involved in the mechanism of tolerance to opioid drugs? Med Hypotheses 32:161–167

    Article  PubMed  CAS  Google Scholar 

  26. Pillai NP, Ross DH (1986) Effects of opiates on high-affinity Ca2+, Mg2+-ATPase in brain membrane subfractions. J Neurochem 47:1642–1646

    Article  PubMed  CAS  Google Scholar 

  27. Goudas LC, Langlade A, Serrie A, Matson W, Milbury P, et al. (1999) Acute decreases in cerebrospinal fluid glutathione levels after intracerebroventricular morphine for cancer pain. Anesth Analg 89:1209–1215

    Article  PubMed  CAS  Google Scholar 

  28. Jhamandas JH, Harris KH, Petrov T, Jhamandas KH (1996) Activation of nitric oxide-synthesizing neurones during precipitated morphine withdrawal. Neuroreport 7:2843–2846

    Article  PubMed  CAS  Google Scholar 

  29. Driver AS, Kodavanti PR, Mundy WR (2000) Age-related changes in reactive oxygen species production in rat brain homogenates. Neurotoxicol Teratol 22:175–181

    Article  PubMed  CAS  Google Scholar 

  30. Peckham EM, Barkley LM, Divin MF, Cicero TJ, Traynor JR (2005) Comparison of the antinociceptive effect of acute morphine in female and male Sprague–Dawley rats using the long-lasting mu-antagonist methocinnamox. Brain Res. 1058:137–147

    Article  PubMed  CAS  Google Scholar 

  31. Klepstad P, Dale O, Skorpen F, Borchgrevink PC, Kaasa S (2005) Genetic variability and clinical efficacy of morphine. Acta Anaesthesiol Scand 49:902–908

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank to Isabel Pérez Monfort for hel** to translate the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Juárez Olguín.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guzmán, D.C., Vázquez, I.E., Brizuela, N.O. et al. Assessment of Oxidative Damage Induced by Acute Doses of Morphine Sulfate in Postnatal and Adult Rat Brain. Neurochem Res 31, 549–554 (2006). https://doi.org/10.1007/s11064-006-9053-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9053-7

Keywords

Navigation