Log in

Antinociceptive Effect of Salvia Extract on Cisplatin-Induced Hyperalgesia in Mice

  • Published:
Neurophysiology Aims and scope

Experiments carried out on mice demonstrated that administration of a platinum-based drug, cisplatin, extensively used in anticancer chemotherapy, exerts significant hyperalgesic effects; it intensifies both phases of pain behavioral reactions induced in the formalin test. When introduction of cisplatin was combined with i.p. injections of 100 mg/kg of an aqueous-alcoholic extract from the leaves of Salvia officinalis, the second phase of cisplatin-enhanced pain in the formalin test was effectively suppressed; the effect was comparable with that provided by injections of morphine or even more intense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Kelland, “The resurgence of platinum-based cancer chemotherapy,” Nat. Rev. Cancer, 7, No. 8, 573-584 (2007).

    Article  PubMed  CAS  Google Scholar 

  2. C. Tournigand, T. Andre, E. Achille, et al., “FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: a randomized GERCOR study,” J. Clin. Oncol., 22, No. 2, 229-237 (2004).

    Article  PubMed  CAS  Google Scholar 

  3. A. Bhagra and R. D. Rao, “Chemotherapy-induced neuropathy,” Curr. Oncol. Rep., 9, No. 4, 290-299 (2007).

    Article  PubMed  CAS  Google Scholar 

  4. G. Kannarkat, E. E. Lasher, and D. Schiff, “Neurologic complications of chemotherapy agents,” Curr. Opin. Neurol., 20, No. 6, 719-725 (2007).

    PubMed  CAS  Google Scholar 

  5. Y. Pan and M. S. Kao, “Discordance of clinical symptoms and electrophysiologic findings in taxane plus platinum-induced neuropathy,” Int. J. Gynecol. Cancer, 17, No. 2, 394-397 (2007).

    Article  PubMed  CAS  Google Scholar 

  6. E. Gamelin, L. Gamelin, L. Bossi, and S. Quasthoff, “Clinical aspects and molecular basis of oxaliplatin neurotoxicity: current management and development of preventive measures,” Sem. Oncol., 29, No. 5, Suppl. 15, 21-33 (2002).

    Article  CAS  Google Scholar 

  7. M. Murata, Y. Yamaji, H. Futami, et al., “Peripheral neuropathy caused by cisplatin in patients with lung cancer,” Gan To Kagaku Ryoho, 16, No. 6, 2283-2288 (1989).

    PubMed  CAS  Google Scholar 

  8. P. Gauchan, T. Andoh, K. Ikeda, et al., “Mechanical allodynia induced by paclitaxel, oxaliplatin and vincristine: different effectiveness of gabapentin and different expression of voltage-dependent calcium channel alpha(2) delta-1 subunit,” Biol. Pharm. Bull., 32, No. 4, 732-734 (2009).

    Article  PubMed  CAS  Google Scholar 

  9. O. Ghirardi, P. Lo Giudice, C. Pisano, et al., “Acetyl-L-Carnitine prevents and reverts experimental chronic neurotoxicity induced by oxaliplatin, without altering its antitumor properties,” Anticancer Res., 25, No. 4, 2681-2687 (2005).

    PubMed  CAS  Google Scholar 

  10. A. Grothey, “Oxaliplatin-safety profile: neurotoxicity,” Sem. Oncol., 30, No. 4, Suppl. 15, 5-13 (2003).

    Article  CAS  Google Scholar 

  11. E. K. Joseph, X. Chen, O. Bogen, and J. D. Levine, “Oxaliplatin acts on IB4-positive nociceptors to induce an oxidative stress-dependent acute painful peripheral neuropathy,” J. Pain, 9, No. 5, 463-472 (2008).

    Article  PubMed  CAS  Google Scholar 

  12. C. Lersch, R. Schmelz, F. Eckel, et al., “Prevention of oxaliplatin-induced peripheral sensory neuropathy by carbamazepine in patients with advanced colorectal cancer,” Clin. Colorect. Cancer, 2, No. 1, 54-58 (2002).

    Article  CAS  Google Scholar 

  13. B. Ling, N. Authier, D. Balayssac, et al., “Behavioral and pharmacological description of oxaliplatin-induced painful neuropathy in rat,” Pain, 128, No. 3, 225-234 (2007).

    Article  PubMed  CAS  Google Scholar 

  14. B. Ling, F. Coudore, L. Decalonne, et al., “Comparative antiallodynic activity of morphine, pregabalin and lidocaine in a rat model of neuropathic pain produced by one oxaliplatin injection,” Neuropharmacology, 55, No. 5, 724-728 (2008).

    Article  PubMed  CAS  Google Scholar 

  15. B. Ling, M. A. Coudore-Civiale, D. Balayssac, et al., “Behavioral and immunohistological assessment of painful neuropathy induced by a single oxaliplatin injection in the rat,” Toxicology, 234, No. 3, 176-184 (2007).

    Article  PubMed  CAS  Google Scholar 

  16. M. O’Hara, D. Kiefer, K. Farrell, and K. Kemper, “A review of 12 commonly used medicinal herbs,” Arch. Fam. Med., 7, No. 6, 523-536 (1998).

    Article  PubMed  Google Scholar 

  17. A. N. A. Abad, M. H. K. Nouri, A. Gharjanie, and F. Tavakoli, “Effect of Matricaria chamomilla hydroalcoholic extract on cisplatin-induced neuropathy in mice,” Chin. J. Nat. Med., 9, No. 2, 126-131 (2011).

    Google Scholar 

  18. A. Namvaran Abbas Abad and M. H. Khayate Nouri, “Interactions between Matricaria recutita and cisplatin on PTZ-induced seizure threshold in mice,” Feyz, 15, No. 3, 188-193 (2011).

    Google Scholar 

  19. A. Namvaran Abbas Abad, M. H. Khayate Nouri, and F. Tavakkoli, “Study of Matricaria recutita and vincristine effects on PTZ-induced seizure threshold in mice,” Res. J. Med. Sci., 5, No. 5, 247-251 (2011).

    Article  Google Scholar 

  20. A. Namvaran Abbas Abad, M. H. Khayate Nouri, and F. Tavakkoli, “Effect of Salvia officinalis hydroalcoholic extract on vincristine-induced neuropathy in mice,” Chin. J. Natur. Med., 9, No. 5, 354-358 (2011).

    Google Scholar 

  21. A. Zargari, Medical Plants, Tehran Univ., Tehran (2003).

    Google Scholar 

  22. A. Rustayan, S. Masoudi, A. Monfared, and H. Komilizadeh, “Volatile constituents of three Salvia species grown wild in Iran,” Flavor Fragrance J., 14, 267-278 (1999).

    Google Scholar 

  23. C. Brickell, Encyclopedia of Garden Plants, London Dorl. Kindersley, London (1996).

    Google Scholar 

  24. M. Hernandez-Perez, R. M. Rabanal, M. C. de la Torre, and B. Rodriguez, “Analgesic, anti-inflammatory, antipyretic and haematological effects of aethiopinone, an o-naphthoquinone diterpenoid from Salvia aethiopis roots and two hemisynthetic derivatives,” Planta Med., 61, No. 6, 505-509 (1995).

    Article  PubMed  CAS  Google Scholar 

  25. S. Wasser, J. M. Ho, H. K. Ang, and C. E. Tan, “Salvia miltiorrhiza reduces experimentally-induced hepatic fibrosis in rats,” J. Hepatol., 29, No. 5, 760-771 (1998).

    Article  PubMed  CAS  Google Scholar 

  26. J. Jimenez, S. Risco, T. Ruiz, and A. Zarzuelo, “Hypoglycemic activity of Salvia lavandulifolia,” Planta Med., 52, No. 4, 260-262 (1986).

    Article  Google Scholar 

  27. W. G. Yu and L. N. Xu, “Effect of acetylsalvianolic acid A on platelet function,” Yao Xue Xue Bao, 29, No. 6, 412-416 (1994).

    PubMed  CAS  Google Scholar 

  28. H. J. P. Dorman, S. G. Deans, and R. C. Noble, “Evaluation in vitro of plant essential oils as natural antioxidants,” J. Essent. Oil Res., 7, 645-651 (1995).

    CAS  Google Scholar 

  29. J. Hohmann, I. Zupko, D. Redei, et al., “Protective effects of the aerial parts of Salvia officinalis, Melissa officinalis and Lavandula angustifolia and their constituents against enzyme-dependent and enzyme-independent lipid peroxidation,” Planta Med., 65, No. 6, 576-578 (1999).

    Article  PubMed  CAS  Google Scholar 

  30. D. Malencic, O. Gasic, M. Popovic, and P. Boza, “Screening for antioxidant properties of Salvia reflexa hornem,” Phytother. Res., 14, No. 7, 546-548 (2000).

    Article  PubMed  CAS  Google Scholar 

  31. I. Zupko, J. Hohmann, D. Redei, et al., “Antioxidant activity of leaves of Salvia species in enzyme-dependent and enzyme-independent systems of lipid peroxidation and their phenolic constituents,” Planta Med., 67, No. 4, 366-268 (2001).

    Article  PubMed  CAS  Google Scholar 

  32. M. J. Howes, N. S. Perry, and P. J. Houghton, “Plants with traditional uses and activities, relevant to the management of Alzheimer’s disease and other cognitive disorders,” Phytother. Res., 17, No. 1, 1-18 (2003).

    Article  PubMed  CAS  Google Scholar 

  33. C. N. Wang, C. W. Chi, Y. L. Lin, et al., “The neuroprotective effects of phytoestrogens on amyloid beta protein-induced toxicity are mediated by abrogating the activation of caspase cascade in rat cortical neurons,” J. Biol. Chem., 276, No. 7, 5287-5295 (2001).

    Article  PubMed  CAS  Google Scholar 

  34. Y. A. Maklad, E. A. Aboutabl, M. M. el-Sherei, and K. M. Meselhy, “Bioactivity studies of Salvia transsylvanica (Schur ex Griseb) grown in Egypt,” Phytother. Res., 13, No. 2, 147-150 (1999).

    Article  PubMed  CAS  Google Scholar 

  35. T. J. Coderre, A. L. Vaccarino, and R. Melzack, “Central nervous system plasticity in the tonic pain response to subcutaneous formalin injection,” Brain Res., 535, No. 1, 155-158 (1990).

    Article  PubMed  CAS  Google Scholar 

  36. K. J. Ivey, “Gastrointestinal intolerance and bleeding with non-narcotic analgesics,” Drugs, 32, Suppl. 4, 71-89 (1986).

    Article  PubMed  Google Scholar 

  37. M. D. Murray and D. C. Brater, “Renal toxicity of the nonsteroidal anti-inflammatory drugs,” Annu. Rev. Pharmacol. Toxicol., 33, 435-465 (1993).

    Article  PubMed  CAS  Google Scholar 

  38. A. Eidi, K. Parivar, A. Mazouji, and Z. Akhtari, “Antinociceptive effects of essential oil of Salvia hypoleuca L. in mice,” Med. Sci. J. Islam. Azad Univ. Tehran Med. Branch, 16, 165-169 (2006).

    Google Scholar 

  39. E. K. Joseph and J. D. Levine, “Comparison of oxaliplatin- and cisplatin-induced painful peripheral neuropathy in the rat,” Pain, 10 (5), 534-541 (2009).

    Article  CAS  Google Scholar 

  40. M. Shibata, T. Ohkubo, H. Takahashi, and R. Inoki, “Modified formalin test: characteristic biphasic pain response,” Pain, 38, No. 3, 347-352 (1989).

    Article  PubMed  CAS  Google Scholar 

  41. K. O. Aley and J. D. Levine, “Different peripheral mechanisms mediate enhanced nociception in metabolic/toxic and traumatic painful peripheral neuropathies in the rat,” Neuroscience, 111, No. 2, 389-397 (2002).

    Article  PubMed  CAS  Google Scholar 

  42. E. K. Joseph and J. D. Levine, “Caspase signalling in neuropathic and inflammatory pain in the rat,” Eur. J. Neurosci., 20, No. 11, 2896-2902 (2004).

    Article  PubMed  Google Scholar 

  43. E. K. Joseph and J. D. Levine, “Mitochondrial electron transport in models of neuropathic and inflammatory pain,” Pain, 121, Nos. 1/2, 105-114 (2006).

    Article  PubMed  CAS  Google Scholar 

  44. L. E. Abrey and D. D. Correa, “Treatment-related neurotoxicity,” Hematol. Oncol. Clin. North. Am., 19, No. 4, 729-738 (2005).

    Article  PubMed  Google Scholar 

  45. M. Stillman and J. P. Cata, “Management of chemotherapy-induced peripheral neuropathy,” Curr. Pain Headache Rep., 10, No. 4, 279-287 (2006).

    Article  PubMed  Google Scholar 

  46. J. K. Sul and L. M. Deangelis, “Neurologic complications of cancer chemotherapy,” Sem. Oncol., 33, No. 3, 324-332 (2006).

    Article  CAS  Google Scholar 

  47. A. Eastman, “Alkylating and platinum-based agents,” Curr. Opin. Oncol., 2, No. 6, 1109-1114 (1990).

    Article  PubMed  CAS  Google Scholar 

  48. W. P. Reed, “Intravenous access devices for supportive care of patients with cancer,” Curr. Opin. Oncol., 3, No. 4, 634-642 (1991).

    PubMed  CAS  Google Scholar 

  49. B. Rosenberg, “Noble metal complexes in cancer chemotherapy,” Adv. Exp. Med. Biol., 91, 129-150 (1977).

    PubMed  CAS  Google Scholar 

  50. R. J. Cersosimo, “Oxaliplatin-associated neuropathy: a review,” Ann. Pharmacother., 39, No. 1, 128-135 (2005).

    PubMed  CAS  Google Scholar 

  51. J. M. Extra, M. Marty, S. Brienza, and J. L. Misset, “Pharmacokinetics and safety profile of oxaliplatin,” Sem. Oncol., 25, No. 2, Suppl. 5, 13-22 (1998).

    CAS  Google Scholar 

  52. C. R. Culy, D. Clemett, and L. R. Wiseman, “Oxaliplatin. A review of its pharmacological properties and clinical efficacy in metastatic colorectal cancer and its potential in other malignancies,” Drugs, 60, No. 4, 895-924 (2000).

    Article  PubMed  CAS  Google Scholar 

  53. T. L. Sahley and G. G. Berntson, “Antinociceptive effects of central and systemic administrations of nicotine in the rat,” Psychopharmacology, 65, No. 3, 279-283 (1979).

    Article  PubMed  CAS  Google Scholar 

  54. E. K. Joseph, X. Chen, S. G. Khasar, and J. D. Levine, “Novel mechanism of enhanced nociception in a model of AIDS therapy-induced painful peripheral neuropathy in the rat,” Pain, 107, Nos. 1/2, 147-158 (2004).

    Article  PubMed  Google Scholar 

  55. H. Adelsberger, S. Quasthoff, J. Grosskreutz, et al., “The chemotherapeutic oxaliplatin alters voltage-gated Na(+) channel kinetics on rat sensory neurons,” Eur. J. Pharmacol., 406, No. 1, 25-32 (2000).

    Article  PubMed  CAS  Google Scholar 

  56. A. V. Krishnan, D. Goldstein, M. Friedlander, and M. C. Kiernan, “Oxaliplatin and axonal Na+ channel function in vivo,” Clin. Cancer Res., 12, No. 15, 4481-4484 (2006).

    Article  PubMed  CAS  Google Scholar 

  57. A. Binder, M. Stengel, R. Maag, et al., “Pain in oxaliplatin-induced neuropathy - sensitisation in the peripheral and central nociceptive system," Eur. J. Cancer., 43, No. 18, 2658-2663 (2007).

    Article  PubMed  CAS  Google Scholar 

  58. M. C. Kiernan and A. V. Krishnan, “The pathophysiology of oxaliplatin-induced neurotoxicity,” Curr. Med. Chem., 13, No. 24, 2901-2907 (2006).

    Article  PubMed  CAS  Google Scholar 

  59. A. V. Krishnan, D. Goldstein, M. Friedlander, and M. C. Kiernan, “Oxaliplatin-induced neurotoxicity and the development of neuropathy,” Muscle Nerve, 32, No. 1, 51-60 (2005).

    Article  PubMed  CAS  Google Scholar 

  60. N. Garrido, A. Perez-Martos, M. Faro, et al., “Cisplatin-mediated impairment of mitochondrial DNA metabolism inversely correlates with glutathione levels,” Biochem. J., 414, No. 1, 93-102 (2008).

    Article  PubMed  CAS  Google Scholar 

  61. J. Goodisman, D. Hagrman, K. A. Tacka, and A. K. Souid, “Analysis of cytotoxicities of platinum compounds,” Cancer Chemother. Pharmacol., 57, No. 2, 257-267 (2006).

    Article  PubMed  CAS  Google Scholar 

  62. M. L. Heaney, J. R. Gardner, N. Karasavvas, et al., “Vitamin C antagonizes the cytotoxic effects of antineoplastic drugs,” Cancer Res., 68, No. 19, 8031-8038 (2008).

    Article  PubMed  CAS  Google Scholar 

  63. C. H. Kim, S. U. Kang, J. Pyun, et al., “Epicatechin protects auditory cells against cisplatin-induced death,” Apoptosis, 13, No. 9, 1184-1194 (2008).

    Article  PubMed  CAS  Google Scholar 

  64. G. Melli, M. Taiana, F. Camozzi, et al., “Alpha-lipoic acid prevents mitochondrial damage and neurotoxicity in experimental chemotherapy neuropathy,” Exp. Neurol., 214, No. 2, 276-284 (2008).

    Article  PubMed  CAS  Google Scholar 

  65. S. J. Flatters and G. J. Bennett, “Studies of peripheral sensory nerves in paclitaxel-induced painful peripheral neuropathy: evidence for mitochondrial dysfunction,” Pain, 122, No. 3, 245-257 (2006).

    Article  PubMed  CAS  Google Scholar 

  66. M. Osio, F. Muscia, L. Zampini, et al., “Acetyl-l-carnitine in the treatment of painful antiretroviral toxic neuropathy in human immunodeficiency virus patients: an open label study,” J. Peripher. Nerv. Syst., 11, No. 1, 72-76 (2006).

    Article  PubMed  CAS  Google Scholar 

  67. E. Y. Qnais, M. Abu-Dieyeh, F. A. Abdulla, and S. S. Abdalla, “The antinociceptive and anti-inflammatory effects of Salvia officinalis leaf aqueous and butanol extracts,” Pharm. Biol., 48, No. 10, 1149-1156 (2010).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Namvaran-Abbas-Abad.

Additional information

Neirofiziologiya/Neurophysiology, Vol. 43, No. 6, pp. 527-533, November-December, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Namvaran-Abbas-Abad, A., Tavakkoli, F. Antinociceptive Effect of Salvia Extract on Cisplatin-Induced Hyperalgesia in Mice. Neurophysiology 43, 452–458 (2012). https://doi.org/10.1007/s11062-012-9249-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-012-9249-1

Keywords

Navigation