Log in

C11orf95-RELA fusions and upregulated NF-KB signalling characterise a subset of aggressive supratentorial ependymomas that express L1CAM and nestin

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Ependymomas (EPN) show site specific genetic alterations and a recent DNA methylation profiling study identified nine molecular subgroups. C11orf95-RELA and YAP1 fusions characterise the RELA and YAP1 molecular subgroups, respectively, of supratentorial (ST)-EPNs. Current guidelines recommend molecular subgrou** over histological grade for accurate prognostication. Clinicopathological features of ST-EPNs in correlation with C11orf95-RELA and YAP1 fusions have been assessed in only few studies. We aimed to study these fusions in EPNs, and identify diagnostic and prognostic markers. qRT-PCR and Sanger Sequencing for the detection of C11orf95-RELA, YAP1-MAMLD1 and YAP1-FAM118B fusion transcripts, gene expression analysis for NFKB1, and immunohistochemistry for p53, MIB-1, nestin, VEGF, and L1CAM were performed. 88 EPNs (10-Grade I and 78-Grade II/III) from all sites were included. RELA fusions were unique to Grade II/III ST-EPNs, detected in 81.4% (22/27) and 18.5% (5/27) of pediatric and adult ST-EPNs respectively. ST-EPNs harbouring RELA fusions showed frequent grade III histology (81.5%), clear cell morphology (70.3%), upregulated NFKB1 expression, MIB-1 labelling indices (LI) ≥ 10% (77.8%), and immunopositivity for nestin (95.7%), VEGF (72%), L1CAM (79%), and p53 (64%). Presence of RELA fusions, L1CAM immunopositivity and MIB-1 LI ≥ 10% associated with poor outcome. L1CAM showed 81% concordance with RELA fusions. YAP1-MAMLD1 fusion was identified in a single RELA fusion negative adult anaplastic ST-EPN. RELA fusions are frequent in ST-EPNs and associate with poor outcome. L1CAM is a surrogate immunohistochemical marker. RELA fusion positive ST-EPNs strongly express nestin indicating increased stemness. Further evaluation of the interactions between NFKB and stem cell pathways is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ellison DW, McLendon R, Wiestler OD et al (2016) Ependymoma. In: Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (eds) WHO classification of tumours of the central nervous system, 4th edn, IARC, Lyon, pp 106–112

    Google Scholar 

  2. Ellison DW, Kocak M, Figarella-Branger D et al (2011) Histopathological grading of pediatric ependymoma: reproducibility and clinical relevance in European trial cohorts. J Negat Results Biomed 10:7

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zamecnik J, Snuderl M, Eckschlager T et al (2003) Pediatric intracranial ependymomas: prognostic relevance of histological, immunohistochemical, and flow cytometric factors. Mod Pathol 16:980–991

    Article  PubMed  Google Scholar 

  4. Dyer S, Prebble E, Davison V et al (2002) Genomic imbalances in pediatric intracranial ependymomas define clinically relevant groups. Am J Pathol 161:2133–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Taylor MD, Poppleton H, Fuller C et al (2005) Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 8:323–335

    Article  CAS  PubMed  Google Scholar 

  6. Raghunathan A, Wani K, Armstrong TS et al (2013) Histological predictors of outcome in ependymoma are dependent on anatomic site within the central nervous system. Brain Pathol 23:584–594

    Article  PubMed  Google Scholar 

  7. Pajtler KW, Witt H, Sill M et al (2015) Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. Cancer Cell 27:728–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Parker M, Mohankumar KM, Punchihewa C et al (2014) C11orf95-RELA fusions drive oncogenic NF-κB signalling in ependymoma. Nature 506:451–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pietsch T, Wohlers I, Goschzik T et al (2014) Supratentorial ependymomas of childhood carry C11orf95-RELA fusions leading to pathological activation of the NF-κB signaling pathway. Acta Neuropathol 127:609–611

    Article  PubMed  Google Scholar 

  10. Figarella-Branger D, Lechapt-Zalcman E, Tabouret E et al (2016) Supratentorial clear cell ependymomas with branching capillaries demonstrate characteristic clinicopathological features and pathological activation of nuclear factor-kappaB signaling. Neuro Oncol 18:919–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wani K, Vera-Bolanos E, Armstrong T et al (2014) P04.01 RELA fusion defines clinicopathologic subsets of supratentorial ependymoma: a study from the collaborative ependymoma research network [abstract]. Neuro Oncol 16:ii36

    Article  PubMed Central  Google Scholar 

  12. Cachia D, Wani K, Penas-Prado M et al (2015) C11orf95-RELA fusion present in a primary supratentorial ependymoma and recurrent sarcoma. Brain Tumor Pathol 32:105–111

    Article  CAS  PubMed  Google Scholar 

  13. Pajtler KW, Mack SC, Ramaswamy V et al (2017) The current consensus on the clinical management of intracranial ependymoma and its distinct molecular variants. Acta Neuropathol 133:5–12

    Article  CAS  PubMed  Google Scholar 

  14. Rajeshwari M, Sharma MC, Kakkar A et al (2016) Evaluation of chromosome 1q gain in intracranial ependymomas. J Neurooncol 127:271–278

    Article  CAS  PubMed  Google Scholar 

  15. Sharma V, Purkait S, Takkar S et al (2016) Analysis of EZH2: micro-RNA network in low and high grade astrocytic tumors. Brain Tumor Pathol 33:117–128

    Article  CAS  PubMed  Google Scholar 

  16. Sharma MC, Ghara N, Jain D et al (2009) A study of proliferative markers and tumor suppressor gene proteins in different grades of ependymomas. Neuropathology 29:148–155

    Article  PubMed  Google Scholar 

  17. Nambirajan A, Sharma MC, Gupta RK, Suri V, Singh M, Sarkar C (2014) Study of stem cell marker nestin and its correlation with vascular endothelial growth factor and microvascular density in ependymomas. Neuropathol Appl Neurobiol 40:714–725

    Article  CAS  PubMed  Google Scholar 

  18. Ebert C, von Haken M, Meyer-Puttlitz B et al (1999) Molecular genetic analysis of ependymal tumors.NF2 mutations and chromosome 22q loss occur preferentially in intramedullary spinal ependymomas. Am J Pathol 155:627–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Witt H, Mack SC, Ryzhova M et al (2011) Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell 20:143–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Johnson RA, Wright KD, Poppleton H et al (2010) Cross-species genomics matches driver mutations and cell compartments to model ependymoma. Nature 466:632–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Godfraind C (2009) Classification and controversies in pathology of ependymomas. Childs Nerv Syst 25:1185–1193

    Article  PubMed  Google Scholar 

  22. **e TX, **a Z, Zhang N, Gong W, Huang S (2010) Constitutive NF-kappa B activity regulates the expression of VEGF and IL-8 and tumor angiogenesis of human glioblastoma. Oncol Rep 23:725–732

    Article  CAS  PubMed  Google Scholar 

  23. Nobusawa S, Hirato J, Sugai T et al (2016) Atypical teratoid/rhabdoid tumor(AT/RT) arising from ependymoma: a type of AT/RT secondarily develo** from other primary central nervous system tumors. J Neuropathol Exp Neurol 75:167–174

    Article  CAS  PubMed  Google Scholar 

  24. Panagopoulos I, Micci F, Thorsen J et al (2013) Fusion of ZMYND8 and RELA genes in acute erythroid leukemia. PLoS ONE 8:e63663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Okazaki T, Sakon S, Sasazuki T et al (2003) Phosphorylation of serine 276 is essential for p65 NF-kappaB subunit-dependent cellular responses. Biochem Biophys Res Commun 300:807–812

    Article  CAS  PubMed  Google Scholar 

  26. Hoesel B, Schmid JA (2013) The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer 12:86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Milde T, Hielscher T, Witt H et al (2012) Nestin expression identifies ependymoma patients with poor outcome. Brain Pathol 22:848–860

    Article  PubMed  Google Scholar 

  28. Fan X, Matsui W, Khaki L et al (2006) Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res 66:7445–7452

    Article  CAS  PubMed  Google Scholar 

  29. Gupta RK, Sharma MC, Suri V, Kakkar A, Singh M, Sarkar C (2014) Study of chromosome 9q gain, Notch pathway regulators and Tenascin-C in ependymomas. J Neurooncol 116:267–274

    Article  CAS  PubMed  Google Scholar 

  30. Garner JM, Fan M, Yang CH et al (2013) Constitutive activation of signal transducer and activator of transcription 3(STAT3)and nuclear factor κB signaling in glioblastoma cancer stem cells regulates the Notch pathway. J Biol Chem 288:26167–26176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li Q, Ford MC, Lavik EB, Madri JA (2006) Modeling the neurovascular niche: VEGF- and BDNF-mediated cross-talk between neural stem cells and endothelial cells: an in vitro study. J Neurosci Res 84:1656–1668

    Article  CAS  PubMed  Google Scholar 

  32. Thomasova D, Mulay SR, Bruns H, Anders HJ (2012) p53- independent roles of MDM2 in NF-kappaB signaling: implications for cancer therapy,wound healing, and autoimmune diseases. Neoplasia 14:1097–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tzaridis T, Milde T, Pajtler KW et al (2016) Low-dose actinomycin-D treatment re-establishes the tumour suppressive function of P53 in RELA-positive ependymoma. Oncotarget 7:61860–61873

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kiefel H, Pfeifer M, Bondong S, Hazin J, Altevogt P (2011) Linking L1CAM-mediated signaling to NF-κB activation. Trends Mol Med 17:178–187

    Article  CAS  PubMed  Google Scholar 

  35. Wani K, Armstrong TS, Jones DT et al (2014) BI-30 characterization of L1CAM as a clinical marker for the C11orf95-RELA fusion in supratentorial ependymomas [Abstract]. Neuro Oncol 16(suppl_5):v30

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by the Indian Council of Medical Research through the Senior Research Fellowship awarded to Prit Benny Malgulwar (No.3/2/3/284/2014/NCD-III) and by Neurosciences Centre, AIIMS. We would like to thank Ms. Suruchi Aggarwal from THSTI, Gurgaon for her help in analysing GEO data. We also thank Ms.Kiran Rani and Mr.Pankaj Kumar from Department of Pathology, AIIMS for their assistance in immunohistochemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehar Chand Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Prit Benny Malgulwar and Aruna Nambirajan have contributed equally, and are co-first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1: Detection of Type 1 and Type 2 C11orf95-RELA fusions in ependymomas

: Quantitative Real Time PCR followed by Sanger sequencing used in the detection of (A) RELAFUS1 (C11orf95 exon 2: RELA exon2) and (B) RELAFUS2 (C11orf95 exon 3: RELA exon 2) fusion transcripts (JPG 285 KB)

Supplementary Figure 2

: NFKB1 gene expression analysis: Dot plot shows >5 fold increase in NFKB1 gene expression in RELA fusion positive supratentorial ependymomas as compared to fusion negative cases and normal brain controls (JPG 76 KB)

Supplementary Figure 3: Kaplan Meier analysis of progression free survival

: Among all cases included, supratentorial and infratentorial showed a trend towards inferior survival (A). Among supratentorial ependymomas, pediatric age showed an inferior outcome (B). MIB1 labelling indices ≥10% correlated with significant progression (C) while immunopositivity for nestin (D) and VEGF (E) (JPG 275 KB)

Supplementary material 4 (DOCX 15 KB)

Supplementary material 5 (DOCX 14 KB)

Supplementary material 6 (DOCX 21 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malgulwar, P.B., Nambirajan, A., Pathak, P. et al. C11orf95-RELA fusions and upregulated NF-KB signalling characterise a subset of aggressive supratentorial ependymomas that express L1CAM and nestin. J Neurooncol 138, 29–39 (2018). https://doi.org/10.1007/s11060-018-2767-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-018-2767-y

Keywords

Navigation