Log in

Controlled preparation of arsenic nanoparticles

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Arsenic nanoparticles are alternative for arsenic compounds currently used in medicine. The preparation of suitable arsenic nanoparticles could significantly reduce the doses of arsenic administered and thus eliminate negative side effects. A method for controlled synthesis of arsenic nanoparticles is proposed and described. The preparation of arsenic nanoparticles, based on the simple reduction of sodium arsenite by sodium tetraborohydride in aqueous solution, led to the production of amorphous, spherical nanoparticles with diameters between 50 and 90 nm. Diameter was controlled simply by varying the pH value of the solution within the range of 5.5–11.0. The addition of cetyl trimethylammonium bromide into the reaction mixture allowed the preparation of small crystalline arsenic nanoparticles with an average diameter of approximately 4 nm, and the addition of bovine serum albumin led to bottle-like amorphous arsenic nanoparticles. The prepared nanoparticles were characterised using the single-particle inductively coupled plasma mass spectrometry method, ultraviolet–visible spectroscopy and electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Anwari NS, Aini N, Hardian A, Suendo V, Prasetyo A (2019) The effect of temperature to CTAB-assisted solvothermal synthesis of TiO2. Iop Conf Ser-Mat Sci 546:042003

    CAS  Google Scholar 

  • Chakraborty S, Bhar K, Saha S, Chakrabarti R, Pal A, Siddhanta A (2014) Novel arsenic nanoparticles are more effective and less toxic than As (III) to inhibit extracellular and intracellular proliferation of Leishmania donovani. J Parasitol Res 2014:187640

    Article  Google Scholar 

  • Chakraborty I, Feliu N, Roy S, Dawson K, Parak WJ (2018) Protein-mediated shape control of silver nanoparticles. Bioconjugate Chem 29(4):1261–1265

    Article  CAS  Google Scholar 

  • Henke K (2009) Arsenic: environmental chemistry, health threats and waste treatment. John Wiley & Sons Ltd

  • Hosnedlova B, Kepinska M, Skalickova S, Fernandez C, Ruttkay-Nedecky B, Peng QM, Baron M, Melcova M, Opatrilova R, Zidkova J, Bjorklund G, Sochor J, Kizek R (2018) Nano-selenium and its nanomedicine applications: a critical review. Int J Nanomed 13:2107–2128

    Article  CAS  Google Scholar 

  • Huang W, Zeng YC (2019) A candidate for lung cancer treatment: arsenic trioxide. Clin Transl Oncol 21(9):1115–1126

    Article  CAS  Google Scholar 

  • Huang P, Zhang YH, Zheng XW, Liu YJ, Zhang H, Fang L, Zhang YW, Yang C, Islam K, Wang C, Naranmandura H (2017) Phenylarsine oxide (PAO) induces apoptosis in HepG2 cells via ROS-mediated mitochondria and ER-stress dependent signaling pathways. Metallomics 9(12):1756–1764

    Article  CAS  Google Scholar 

  • Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chem Commun 7:617–618

    Article  Google Scholar 

  • Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotech 9:1050–1074

    Article  CAS  Google Scholar 

  • **dal AB (2017) The effect of particle shape on cellular interaction and drug delivery applications of micro- and nanoparticles. Int J Pharm 532(1):450–465

    Article  CAS  Google Scholar 

  • Kalyan I, Pal T, Pal A (2019) Time and temperature dependent formation of hollow gold nanoparticles via galvanic replacement reaction of As(0) and its catalytic application. MRS Communications 9:270–279

    Article  CAS  Google Scholar 

  • Khan Z, Al-Thabaiti SA, Obaid AY, Khan ZA, Al-Youbi AAO (2012) Shape-directing role of cetyltrimethylammonium bromide in the preparation of silver nanoparticles. J. Colloid Interface Sci. 367:101–108

    Article  CAS  Google Scholar 

  • Laborda F, Bolea E, Jimenez-Lamana J (2014) Single particle inductively coupled plasma mass spectrometry: a powerful tool for nanoanalysis. Anal Chem 86(5):2270–2278

    Article  CAS  Google Scholar 

  • Lahtinen RM, Mertens SFL, East E, Kiely CJ, Schiffrin DJ (2004) Silver halide colloid precursors for the synthesis of monolayer-protected clusters. Langmuir 20(8):3289–3296

    Article  CAS  Google Scholar 

  • Lee O, Jeong SH, Shin WU, Lee G, Oh C, Son SW (2013) Influence of surface charge of gold nanorods on skin penetration. Skin Res Technol 19(1):E390–E396

    Article  Google Scholar 

  • Liu B, Pan SG, Dong XS, Qiao HQ, Jiang HC, Krissansen GW, Sun XY (2006) Opposing effects of arsenic trioxide on hepatocellular carcinomas in mice. Cancer Sci 97(7):675–681

    Article  CAS  Google Scholar 

  • Loula M, Kana A, Mestek O (2019) Non-spectral interferences in single-particle ICP-MS analysis: an underestimated phenomenon. Talanta 202:565–571

    Article  CAS  Google Scholar 

  • Mandal G, Orta J, Sharma M, Mukhopadhyay R (2013) Trypanosomatid aquaporins: roles in physiology and drug response. Diseases 2(1):3–23

    Article  Google Scholar 

  • Mehta A, Shaha C (2006) Mechanism of metalloid-induced death in Leishmania spp.: role of iron, reactive oxygen species, Ca2+, and glutathione. Free Radic Biol Med 40(10):1857–68

    Article  CAS  Google Scholar 

  • Naujokas MF, Anderson B, Ahsan AHV, Graziano JH, Thompson C, Suk WA (2013) The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environ Health Perspect 121(3):295–302

    Article  Google Scholar 

  • Okuda M, Kobayashi Y, Suzuki K, Sonoda K, Kondoh T, Wagawa A, Kondo A, Yoshimura H (2005) Self-organized inorganic nanoparticle arrays on protein lattices. Nano Lett 5(5):991–993

    Article  CAS  Google Scholar 

  • Pal A, Saha S, Maji SK, Kundu M, Kundu A (2012) Wet-chemical synthesis of spherical arsenic nanoparticles by a simple reduction method and its characterisation. Adv Mat Lett 3(3):177–180

    Article  Google Scholar 

  • Platzbecker U, Avvisati G, Cicconi L, Thiede C, Paoloni F, Vignetti M, Ferrara F, Divona M, Albano F, Efficace F, Fazi P, Sborgia M, Di Bona E, Breccia M, Borlenghi E, Cairoli R, Rambaldi A, Melillo L, La Nasa G, Fiedler W, Brossart P, Hertenstein B, Salih HR, Wattad M, Lubbert M, Brandts CH, Hanel M, Rollig C, Schmitz N, Link H, Frairia C, Pogliani EM, Fozza C, D’Arco AM, Di Renzo N, Cortelezzi A, Fabbiano F, Dohner K, Ganser A, Dohner H, Amadori S, Mandelli F, Ehninger G, Schlenk RF, Lo-Coco F (2017) Improved outcomes with retinoic acid and arsenic trioxide compared with retinoic acid and chemotherapy in non-high-risk acute promyelocytic leukemia: final results of the randomized Italian-German APL0406 Trial. J Clin Oncol 35(6):605–612

    Article  CAS  Google Scholar 

  • Sanchez-Martinez D, Gomez-Solis C, Torres-Martinez LM (2015) CTAB-assisted ultrasonic synthesis, characterization and photocatalytic properties of WO3. Mater Res Bull 61:165–172

    Article  Google Scholar 

  • Shen SW, Li XF, Cullen WR, Weinfeld M, Le XC (2013) Arsenic binding to proteins. Chem Rev 113(10):7769–7792

    Article  CAS  Google Scholar 

  • Singh Z, Singh I (2019) CTAB surfactant assisted and high pH nano-formulations of CuO nanoparticles pose greater cytotoxic and genotoxic effects. Sci Rep-Uk 9:5880

    Article  Google Scholar 

  • Singh N, Wadhawan M, Tiwari S, Kumar R, Rathaur S (2016) Inhibition of Setaria cervi protein tyrosine phosphatases by phenylarsine oxide: a proteomic and biochemical study. Acta Trop 159:20–28

    Article  CAS  Google Scholar 

  • Sodhi KK, Kumar M, Agrawal PK, Singh DK (2019) Perspectives on arsenic toxicity, carcinogenicity and its systemic remediation strategies. Environ Technol Innov 16:100462

    Article  Google Scholar 

  • Subbarayan PR, Lima M, Ardalan B (2007) Arsenic trioxide/ascorbic acid therapy in patients with refractory metastatic colorectal carcinoma: a clinical experience. Acta Oncol 46(4):557–561

    Article  CAS  Google Scholar 

  • Subastri A, Arun V, Sharma P, PreediaBabu E, Suyavaran A, Nithyananthan S, Alshammari GM, Aristatile B, Dharuman V, Thirunavukkarasu C (2018) Synthesis and characterisation of arsenic nanoparticles and its interaction with DNA and cytotoxic potential on breast cancer cells. Chem Biol Interact 295:73–83

    Article  CAS  Google Scholar 

  • Tan YN, Lee JY, Wang DIC (2010) Uncovering the design rules for peptide synthesis of metal nanoparticles. J Am Chem Soc 132(16):5677–5686

    Article  CAS  Google Scholar 

  • Wang ZY (2001) Arsenic compounds as anticancer agents. Cancer Chemother Pharmacol 48:S72–S76

    Article  CAS  Google Scholar 

  • Yoshimura H (2006) Protein-assisted nanoparticle synthesis. Colloid Surface A 282:464–470

    Article  Google Scholar 

  • Zhang J, Song BC, Peng WT, Feng YL, Xu B (2010) CTAB-assisted hydrothermal synthesis of nano-sized tetragonal zirconium dioxide. Mater Chem Phys 123(2–3):606–609

    Article  CAS  Google Scholar 

  • Zhang J, Tang H, Liu ZF, Chen BA (2017) Effects of major parameters of nanoparticles on their physical and chemical properties and recent application of nanodrug delivery system in targeted chemotherapy. Int J Nanomed 12:8483–8493

    Article  CAS  Google Scholar 

  • Zhao HY, Jiang QP, Li YH (2013) Surfactant CTAB-assisted synthesis and gas-sensing characteristics of SnO2 nanomaterials. Adv Mater Res-Switz 750–752:241–244

    Google Scholar 

  • Zhou Q, ** SH (2018) A review on arsenic carcinogenesis: epidemiology, metabolism, genotoxicity and epigenetic changes. Regul Toxicol Pharmacol 99:78–88

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported from the grant of Specific university research—Grant No. A1_FCHI_2021_003, the Operational Programme Prague Competitiveness (CZ.2.16/3.1.00/24501) and National Program of Sustainability (NPU I LO1613) MSMT-43760/2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonín Kaňa.

Ethics declarations

Not applicable.

Conflict of interest

The authors declare no conflict of interest for this study.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 367 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaňa, A., Loula, M. & Mestek, O. Controlled preparation of arsenic nanoparticles. J Nanopart Res 23, 239 (2021). https://doi.org/10.1007/s11051-021-05356-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-021-05356-5

Keywords

Navigation