Log in

Sensitive detection of mercury using the fluorescence resonance energy transfer between CdTe/CdS quantum dots and Rhodamine 6G

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The sensitive and selective detection of mercury in aqueous solution is of paramount importance as the mercury concentration in drinking water above the threshold level set by world health organization can cause serious health issues to humans. We demonstrate a simple, facile, and cost-effective one pot synthesis route to synthesize MPA (3-mercaptopropionic acid) stabilized CdTe/CdS core-shell quantum dots and its application for detection of mercury using the fluorescence resonance energy transfer with a cationic dye, Rhodamine 6G. The quantum dots prepared via chemical reduction strategy using a combination of reducing agents, namely sodium borohydride and citric acid exhibit a high quantum efficiency (> 20% for solid state). Structural as well as luminescence studies of the prepared quantum dots were found to depend on the pH as well as the size of the quantum dots (hydrodynamic diameter ranging from 9 to 16 nm). Analysis of the fluorescence resonance energy transfer (FRET) between the prepared quantum dots and Rhodamine 6G elucidate that efficient energy transfer happens in the presence of a cetyl trimethyl ammonium bromide (CTAB) surfactant. Though the prepared CdTe/CdS quantum dots exhibit fluorescence quenching with an increase in mercury concentration and act as an “OFF-sensor,” the Rhodamine 6G-quantum dot pair employed here found to be a better approach as the inherent fluorescence of Rh6G is insensitive to mercury concentration. Our studies elucidate that the fluorescence ratio of Rh6G in a FRET pair follows a linear nature for the Stern-Volmer plot in the concentration range of Hg2+ ions (0.1 nM to 2 μM) and provide a LOD of 3.8 nM.

Schematic representation showing one-pot synthesis of CdTeCdS QDs for FRET based sensing of mercury ions in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aboulaich A, Billaud D, Abyan M, Balan L, Gaumet J-J, Medjadhi G, Ghanbaja J, Rl S (2012) One-pot noninjection route to CdS quantum dots via hydrothermal synthesis. ACS Appl Mater Interfaces 4:2561–2569

    Article  CAS  Google Scholar 

  • Ag D, Bongartz R, Dogan LE, Seleci M, Walter J-G, Demirkol DO, Stahl F, Ozcelik S, Timur S, Scheper T (2014) Biofunctional quantum dots as fluorescence probe for cell-specific targeting. Colloids Surf B: Biointerfaces 114:96–103

    Article  CAS  Google Scholar 

  • Akshya S, Hariharan P, Kumar VV, Anthony SP (2015) Surface functionalized fluorescent CdS QDs: selective fluorescence switching and quenching by Cu2+ and Hg2+ at wide pH range. Spectrochim Acta A Mol Biomol Spectrosc 135:335–341

    Article  CAS  Google Scholar 

  • Bao H, Gong Y, Li Z, Gao M (2004) Enhancement effect of illumination on the photoluminescence of water-soluble CdTe nanocrystals: toward highly fluorescent CdTe/CdS core-shell structure. Chem Mater 16:3853–3859

    Article  CAS  Google Scholar 

  • Basheer NS, Kumar BR, Kurian A, George SD (2013) Silver nanoparticle size-dependent measurement of quantum efficiency of Rhodamine 6G. Appl Phys B Lasers Opt 113:581–587

    Article  CAS  Google Scholar 

  • Brus L (1986) Zero-dimensional “excitons” in semiconductor clusters. IEEE J Quantum Electron 22:1909–1914

    Article  Google Scholar 

  • Chen G, Song F, **ong X, Peng X (2013) Fluorescent nanosensors based on fluorescence resonance energy transfer (FRET). Ind Eng Chem Res 52:11228–11245

    Article  CAS  Google Scholar 

  • Chen L, Zhao Q, Zhang X-Y, Tao G-H (2014) Determination of silver ion based on the redshift of emission wavelength of quantum dots functionalized with rhodanine. Chin Chem Lett 25:261–264

    Article  CAS  Google Scholar 

  • Chen Y, Chen Z, He Y, Lin H, Sheng P, Liu C, Luo S, Cai Q (2010) L-cysteine-capped CdTe QD-based sensor for simple and selective detection of trinitrotoluene. Nanotechnology 21:125502

    Article  Google Scholar 

  • Choi M-J, Pierson R, Chang Y, Guo H, Kang I-K (2013) Enhanced intracellular uptake of CdTe quantum dots by conjugation of oligopeptides. J Nanomater 2013:14

    Google Scholar 

  • Chu VH, Nghiem THL, Le TH, Vu DL, Tran HN, Vu TKL (2012) Synthesis and optical properties of water soluble CdSe/CdS quantum dots for biological applications. Adv Nat Sci Nanosci Nanotechnol 3:025017

    Article  Google Scholar 

  • Clapp AR, Medintz IL, Mauro JM, Fisher BR, Bawendi MG, Mattoussi H (2004) Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. J Am Chem Soc 126:301–310

    Article  CAS  Google Scholar 

  • de Mello DC (2011) Synthesis and properties of colloidal heteronanocrystals. Chem Soc Rev 40:1512–1546

    Article  Google Scholar 

  • De Sousa ME, Fernández van Raap MB, Rivas PC, Mendoza Zélis P, Girardin P, Pasquevich GA, Alessandrini JL, Muraca D, Sánchez FH (2013) Stability and relaxation mechanisms of citric acid coated magnetite nanoparticles for magnetic hyperthermia. J Phys Chem C 117:5436–5445

    Article  Google Scholar 

  • de Souza GC, Ribeiro DS, Rodrigues SSM, Paim APS, Lavorante AF, da Silva VL, Santos JL, Araújo AN, Montenegro MCB (2016) Clean photoinduced generation of free reactive oxygen species by silica films embedded with CdTe–MTA quantum dots. RSC Adv 6:8563–8571

    Article  Google Scholar 

  • Ding X, Qu L, Yang R, Zhou Y, Li J (2015) A highly selective and simple fluorescent sensor for mercury (II) ion detection based on cysteamine-capped CdTe quantum dots synthesized by the reflux method. Luminescence 30:465–471

    Article  CAS  Google Scholar 

  • Duan J, Song L, Zhan J (2009) One-pot synthesis of highly luminescent CdTe quantum dots by microwave irradiation reduction and their Hg2+-sensitive properties. J Nano Res 2:61–68

    Article  CAS  Google Scholar 

  • Emin S, Loukanov A, Wakasa M, Nakabayashi S, Kaneko Y (2010) Photostability of water-dispersible CdTe quantum dots: cap** ligands and oxygen. Chem Lett 39:654–656

    Article  CAS  Google Scholar 

  • Frasco MF, Chaniotakis N (2009) Semiconductor quantum dots in chemical sensors and biosensors. Sensors 9:7266–7286

    Article  CAS  Google Scholar 

  • Gaponik N, Talapin DV, Rogach AL, Hoppe K, Shevchenko EV, Kornowski A, Eychmüller A, Weller H (2002) Thiol-cap** of CdTe nanocrystals: an alternative to organometallic synthetic routes. J Phys Chem B 106:7177–7185

    Article  CAS  Google Scholar 

  • Geyer S, Porter VJ, Halpert JE, Mentzel TS, Kastner MA, Bawendi MG (2010) Charge transport in mixed CdSe and CdTe colloidal nanocrystal films. Phys Rev B 82:155201

    Article  Google Scholar 

  • Gong T, Liu J, Liu X, Liu J, **ang J, Wu Y (2016) A sensitive and selective sensing platform based on CdTe QDs in the presence of l-cysteine for detection of silver, mercury and copper ions in water and various drinks. Food Chem 213:306–312

    Article  CAS  Google Scholar 

  • Huang F, Huang B (2015) Aqueous synthesis of water-soluble citrate-modified cadmium selenide/cadmium sulfide/zinc sulfide quantum dots. Spectrosc Lett 48:422–426

    Article  CAS  Google Scholar 

  • **g L, Kershaw SV, Li Y, Huang X, Li Y, Rogach AL, Gao M (2016) Aqueous based semiconductor nanocrystals. Chem Rev 116:10623–10730

    Article  CAS  Google Scholar 

  • John J, Thomas L, George NA, Kurian A, George SD (2015) Tailoring of optical properties of fluorescein using green synthesized gold nanoparticles. Phys Chem Chem Phys 17:15813–15821

    Article  CAS  Google Scholar 

  • Kumar MMD, Devadason S (2013) Structural and optical properties of CdTe/CdSe heterostructure multilayer thin films prepared by physical vapor deposition technique. S Appl Nanosci 3:453–459

    Article  Google Scholar 

  • Kumar P, Kim K-H, Bansal V, Lazarides T, Kumar N (2017) Progress in the sensing techniques for heavy metal ions using nanomaterials. J Ind Eng Chem 54:30–43

    Article  CAS  Google Scholar 

  • Kurian A, George SD, Nampoori V, Vallabhan C (2005) Study on the determination of molecular distance in organic dye mixtures using dual beam thermal lens technique. Spectrochim Acta A Mol Biomol Spectrosc 61:2799–2802

    Article  Google Scholar 

  • Li H, Shih WY, Shih W-H (2007) Synthesis and characterization of aqueous carboxyl-capped CdS quantum dots for bioapplications. Ind Eng Chem Res 46:2013–2019

    Article  CAS  Google Scholar 

  • Li J, Mei F, Li W-Y, He X-W, Zhang Y-K (2008) Study on the fluorescence resonance energy transfer between CdTe QDs and butyl-rhodamine B in the presence of CTMAB and its application on the detection of Hg(II). Spectrochim Acta A Mol Biomol Spectrosc 70:811–817

    Article  Google Scholar 

  • Martin A, Narayanaswamy R (1997) Studies on quenching of fluorescence of reagents in aqueous solution leading to an optical chloride-ion sensor. Sensors Actuators B Chem 39:330–333

    Article  CAS  Google Scholar 

  • Mathew S, Saran AD, Singh Bhardwaj B, Ani Joseph S, Radhakrishnan P, Nampoori V, Vallabhan C, Bellare JR (2012) Size dependent optical properties of the CdSe-CdS core-shell quantum dots in the strong confinement regime. J Appl Phys 111:074312

    Article  Google Scholar 

  • Medintz IL, Clapp AR, Mattoussi H, Goldman ER, Fisher B, Mauro JM (2003) Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat Mater 2:630–638

    Article  CAS  Google Scholar 

  • Murray C, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715

    Article  CAS  Google Scholar 

  • Paim APS, Rodrigues SSM, Ribeiro DS, de Souza GC, Santos JL, Araújo AN, Amorim CG, Teixeira-Neto É, da Silva VL, Montenegro MC (2017) Fluorescence probe for mercury (ii) based on the aqueous synthesis of CdTe quantum dots stabilized with 2-mercaptoethanesulfonate. New J Chem 41:3265–3272

    Article  CAS  Google Scholar 

  • Piella J, Bastús NG, Puntes V (2016) Size-controlled synthesis of sub-10-nanometer citrate-stabilized gold nanoparticles and related optical properties. Chem Mater 28:1066–1075

    Article  CAS  Google Scholar 

  • Rajh T, Micic OI, Nozik AJ (1993) Synthesis and characterization of surface-modified colloidal cadmium telluride quantum dots. J Phys Chem 97:11999–12003

    Article  CAS  Google Scholar 

  • Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5:763–775

    Article  CAS  Google Scholar 

  • Rodzik-Czałka Ł, Lewandowska-Łańcucka J, Gatta V, Venditti I, Fratoddi I, Szuwarzyński M, Romek M, Nowakowska M (2017) Nucleobases functionalized quantum dots and gold nanoparticles bioconjugates as a fluorescence resonance energy transfer (FRET) system—synthesis, characterization and potential applications. J Colloid Interface Sci

  • Saikia D, Dutta P, Sarma NS, Adhikary NC (2016) CdTe/ZnS core/shell quantum dot-based ultrasensitive PET sensor for selective detection of Hg(II) in aqueous media. Sensors Actuators B Chem 230:149–156

    Article  CAS  Google Scholar 

  • Shamirian A, Ghai A, Snee PT (2015) QD-based FRET probes at a glance. Sensors 15:13028–13051

    Article  Google Scholar 

  • Singh H, Saleem SM, Singh R, Birdi K (1980) Micelle formation of ionic surfactants in polar nonaqueous solvents. J Phys Chem 84:2191–2194

    Article  CAS  Google Scholar 

  • Smith AM, Mohs AM, Nie S (2009) Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. Nat Nanotechnol 4:56–63

    Article  CAS  Google Scholar 

  • Tang G, Du L, Su X (2013) Detection of melamine based on the fluorescence resonance energy transfer between CdTe QDs and Rhodamine B. Food Chem 141:4060–4065

    Article  CAS  Google Scholar 

  • Tang G, Wang J, Li Y, Su X (2015) Determination of arsenic (III) based on the fluorescence resonance energy transfer between CdTe QDs and Rhodamine 6G. RSC Adv 5:17519–17525

    Article  CAS  Google Scholar 

  • Tang L, Mo S, Liu SG, Ling Y, Zhang XF, Li NB, Luo HQ (2018) A sensitive “turn-on” fluorescent sensor for melamine based on FRET effect between polydopamine-glutathione nanoparticles and Ag nanoparticles. J Agric Food Chem 66:2174–2179

    Article  CAS  Google Scholar 

  • Ullah N, Mansha M, Khan I, Qurashi A (2018) Nanomaterial-based optical chemical sensors for the detection of heavy metals in water: recent advances and challenges. TrAC Trends Anal Chem 100:155–166

    Article  CAS  Google Scholar 

  • Ulusoy M, Walter J-G, Lavrentieva A, Kretschmer I, Sandiford L, Le Marois A, Bongartz R, Aliuos P, Suhling K, Stahl F (2015) One-pot aqueous synthesis of highly strained CdTe/CdS/ZnS nanocrystals and their interactions with cells. RSC Adv 5:7485–7494

    Article  CAS  Google Scholar 

  • Vale BR, Silva FO, Carvalho MS, Raphael E, Ferrari JL, Schiavon MA (2016) Water-soluble CdTe/CdS Core/Shell semiconductor nanocrystals: how their optical properties depend on the synthesis methods. Crystals 6:133

    Article  Google Scholar 

  • Vázquez-González M, Carrillo-Carrion C (2014) Analytical strategies based on quantum dots for heavy metal ions detection. J Biomed Opt 19:101503

    Article  Google Scholar 

  • Wang Y-Y, **ang X, Yan R, Liu Y, Jiang F-L (2018) Förster resonance energy transfer from quantum dots to rhodamine B as mediated by a cationic surfactant: a thermodynamic perspective. J Phys Chem C 122:1148–1157

    Article  CAS  Google Scholar 

  • Yao J, Gou X (2016) An investigation of preparation, properties, characterization and the mechanism of zinc blende CdTe/CdS core/shell quantum dots for sensitive and selective detection of trace mercury. J Mater Chem C 4:9856–9863

    Article  CAS  Google Scholar 

  • Yu WW, Qu L, Guo W, Peng X (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15:2854–2860

    Article  CAS  Google Scholar 

  • Zhang Y-Y, Kim J-Y, Kim Y, Jang D-J (2012) Controlled optical properties of water-soluble CdTe/CdS/ZnS quantum dots. J Nanopart Res 14:1117

    Article  Google Scholar 

  • Zhou D, Lin M, Chen Z, Sun H, Zhang H, Sun H, Yang B (2011) Simple synthesis of highly luminescent water-soluble CdTe quantum dots with controllable surface functionality. Chem Mater 23:4857–4862

    Article  CAS  Google Scholar 

  • Zhu J, Zhao Z-J, Li J-J, Zhao J-W (2017) CdTe quantum dot-based fluorescent probes for selective detection of Hg(II): the effect of particle size. Spectrochim Acta, Part A 177:140–146

    Article  CAS  Google Scholar 

  • Zrazhevskiy P, Gao X (2013) Quantum dot imaging platform for single-cell molecular profiling. Nat Commun 4:1619

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the (1) DST-FIST programme via approval letter SR/FST/PSI-174/2012 for providing Powder X-ray diffractometer; (2) SERB, DST Govt. of India through the project no. SB/S2/CMP-017/2014; (3) SAIF, IIT Bombay, for providing HR-TEM facility; (4) Dr. Sudarshan Kini, sincerely thanks Manipal University for providing the postdoctoral fellowship; and (5) SDG acknowledges Manipal University for Dr. T M A Pai Endowment Chair in Applied Nanosciences.

Funding

This study received financial support from Joint Manipal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajan D. George.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 1886 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kini, S., Ganiga, V., Kulkarni, S.D. et al. Sensitive detection of mercury using the fluorescence resonance energy transfer between CdTe/CdS quantum dots and Rhodamine 6G. J Nanopart Res 20, 232 (2018). https://doi.org/10.1007/s11051-018-4320-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-018-4320-5

Keywords

Navigation