Log in

Starch-modified magnetite nanoparticles for impregnation into cartilage

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The paper presents preparation and characterization of starch-modified Fe3O4 nanoparticles (NPs) in aqueous dispersion after impregnation into healthy and damaged types of cartilage. We show that starch-modified dispersion has a narrower size distribution than a non‐stabilized one. The average hydrodynamic radius of magnetite NPs in a dispersion used for impregnation into cartilage is (48 ± 1) nm with the width of the distribution from 5 to 200 nm. We investigate stability of aqueous magnetite NPs dispersions during storage and with increase in temperature (up to 70 °C). We find that polydisperse magnetite NPs can penetrate into cartilage and the size and concentration of impregnated particles depend on the organization of the tissue structure. The results confirm the possibility of application of magnetite NPs in diagnostics and laser treatment of degenerative cartilage deceases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Baum OI, Soshnikova YuM, Sobol EN, Korneychuk AYa, Obrezkova MV, Svistushkin VM, Timofeeva OK, Lunin VV (2011) Laser resha** of costal cartilage for transplantation. Lasers Surg Med 43:511–515

    Article  Google Scholar 

  • Chaubey GS, Barcena C, Poudyal N, Rong CJ (2007) Synthesis and stabilization of FeCo nanoparticles. Am Chem Soc 129:7214–7215

    Article  CAS  Google Scholar 

  • Chen Y, She H, Luo X, Yue GH, Mi WB, Bai HL, Peng DL (2010) Chemical synthesis of monodisperse Fe–Ni nanoparticles via a diffusion-based approach. J Nanosci Nanotechnol 10(5):3053–3059

    Article  CAS  Google Scholar 

  • Chen J, Wang F, Zhang Y, ** X, Zhang L (2012) In vivo tracking of superparamagnetic iron oxide nanoparticle labeled chondrocytes in large animal model. Ann Biomed Eng 40(12):2568–2578

    Article  Google Scholar 

  • Crocketta R, Roosa S, Rossbacha P, Dorab C, Bornb W, Troxlerc H (2005) Imaging of the surface of human and bovine articular cartilage with ESEM and AFM. Tribol Lett 19(4):311–317

    Article  Google Scholar 

  • Daniel-da-Silva AL, Trindade T (2011) Biofunctional composites of polysaccharides containing inorganic nanoparticles. In: Abbass Hashim (ed) Advances in nanocomposite technology. InTech, Sheffield, UK, pp 275–298. ISBN: 978-953-307-347-7

  • De Jong WH, Borm PJA (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomed 3(2):133–149

    Article  Google Scholar 

  • Estevanato LL, Lacava LM, Carvalho LC, Azevedo RB, Silva OJ (2012) Long-term biodistribution and biocompatibility investigation of dextran-coated magnetite nanoparticle using mice as the animal model. Biomed Nanotechnol 8(2):301–308

    Article  CAS  Google Scholar 

  • Hazer DB, Kiliçay E, Hazer B (2012a) Poly(3-hydroxyalkanoate)s: diversification and biomedical applications: a state of the art review. Math Sci Eng 32:637–647

    CAS  Google Scholar 

  • Hazer DB, Mut M, Dinçer N, Sarıbas Z, Hazer B, Özgen T (2012b) The efficacy of silver-embedded polypropylene-grafted glycol-coated ventricular catheters on prevention of shunt catheter in rats. Childs Nerv Syst 28:839–846

    Article  Google Scholar 

  • Khandhar AP, Ferguson RM, Krishnana KM (2011) Monodispersed magnetite nanoparticles optimized for magnetic fluidhyperthermia: implications in biological systems. J Appl Phys 109:07B310–07B3103

    Article  Google Scholar 

  • Kim DK, Voit W, Zapka W, Bjelke B (2001) Biomedical application of ferrofluids containing magnetite nanoparticles. Mater Res Soc Symp Proc 676:Y8.32.1–Y8.32.6

    Google Scholar 

  • Lai SM, Tsai TYu, Hsu ChY (2012) Bifunctional silica-coated superparamagnetic FePt nanoparticles for fluorescence/MR dual imaging. J Nanomater. doi:10.1155/2012/631584

    Google Scholar 

  • Lebowitz J, Lewis MS, Schuck P (2002) Modern analytical ultracentrifugation in protein science: a tutorial review. Protein Sci 11:2067–2079

    Article  CAS  Google Scholar 

  • Lim EW, Feng R (2012) Agglomeration of magnetic nanoparticles. J Chem Phys 136(12):124109. doi:10.1063/1.3697865

    Article  Google Scholar 

  • Lin MM, Li Sh, Kim HH, Kim HJ (2010) Complete separation of magnetic nanoparticles via chemical cleavage of dextran by ethylenediamine for intracellular uptake. Mater Chem 20:444–447

    Article  CAS  Google Scholar 

  • Majewski P, Thierry B (2008) Functionalized magnetite nanoparticles—synthesis, properties, and bioapplications, particulate systems in nano- and biotechnologies. CRC Press\University of Florida, Boca Raton\Gainesville

    Google Scholar 

  • Mornet S, Grasset F, Portier J, Duguet E (2002) Maghemite@silica nanoparticles for biological applications. Eur Cells Mater 3:110–113

    Google Scholar 

  • Mornet S, Vasseur S, Grasset F, Duguet EJ (2004) Magnetic nanoparticle design for medical diagnosis and therapy. Mater Chem 14:2161–2175

    Article  CAS  Google Scholar 

  • Philo JS (2006) Is any measurement method optimal for all aggregate sizes and types? AAPS J 8(3):E564–E571

    Article  CAS  Google Scholar 

  • Podzimek S (2011) Light scattering, size exclusion chromatography and asymmetric flow field flow fractionation. Wiley, Hoboken

    Book  Google Scholar 

  • Popov AP, Priezzhev AV, Myllylä R (2007) Optimal sizes of gold nanoparticles for laser treatment of tumors. Proc SPIE 6534:65343K-1–65343K-5

    Google Scholar 

  • Shyu JJ, Chan CH, Hsiung MW, Yang PN, Chen HW (2009) Diagnosis of articular cartilage damage by polarization sensitive optical coherence tomography and the extracted optical properties. Prog Electromagn Res PIER 91:365–376

    Article  Google Scholar 

  • Sobol E, Sviridov A, Omelchenko A, Bagratashvili V, Kitai M, Harding SE (2000) Laser resha** of cartilage. Biotechnol Genet Eng Rev 17:553–578

    Article  CAS  Google Scholar 

  • Stolz M, Raiteri R, Daniels AU, VanLandingham MR (2004) Dynamic elastic modulus of porcine articular cartilage determined at two different levels of tissue organization by indentation-type atomic force microscopy. Biophys J 86:3269–3283

    Article  CAS  Google Scholar 

  • Stolz M, Gottardi R, Raiteri R, Miot S, Martin I (2009) Early detection of aging cartilage and osteoarthritis in mice and patient samples using atomic force microscopy. Nat Nanotechnol 4:186–192

    Article  CAS  Google Scholar 

  • Sun X, Zheng Ch, Zhang F, YaJ Yang (2009) Size-controlled synthesis of magnetite (Fe3O4) nanoparticles coated with glucose and gluconic acid from a single Fe(III) precursor by a sucrose bifunctional hydrothermal method. J Phys Chem 113(36):16002–16008

    CAS  Google Scholar 

  • Xu CT, Axelsson J, Andersson-Engels S (2009) Fluorescence diffuse optical tomography using upconverting nanoparticles. Appl Phys Lett 94:251107. doi:10.1063/1.3156857

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Richard Thelen for technical assistance in AFM investigations. The work was supported by Russian Foundation of Basic Research Grants 11-02-92614, 12-08-13166, and 12-02-91326. This work was partly carried out with the support of the Karlsruhe Nano Micro Facility (KNMF, www.kit.edu/knmf), a Helmholtz Research Infrastructure at Karlsruhe Institute of Technology (KIT, www.kit.edu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulia M. Soshnikova.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soshnikova, Y.M., Roman, S.G., Chebotareva, N.A. et al. Starch-modified magnetite nanoparticles for impregnation into cartilage. J Nanopart Res 15, 2092 (2013). https://doi.org/10.1007/s11051-013-2092-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-2092-5

Keywords

Navigation