Log in

Lipoproteins tethered dendrimeric nanoconstructs for effective targeting to cancer cells

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In the present investigation, poly (propylene imine) dendrimers up to fifth generation (PPI G5.0) were synthesized using ethylene diamine and acrylonitrile. Lipoproteins (high-density lipoprotein; HDL and low-density lipoprotein; LDL) were isolated from human plasma by discontinuous density gradient ultracentrifugation, characterized and tethered to G5.0 PPI dendrimers to construct LDL- and HDL-conjugated dendrimeric nanoconstructs for tumor-specific delivery of docetaxel. Developed formulations showed sustained release characteristics in in vitro drug release and in vivo pharmacokinetic studies. The cancer targeting potential of lipoprotein coupled dendrimers was investigated by ex vivo cytotoxicity and cell uptake studies using human hepatocellular carcinoma cell lines (HepG2 cells) and biodistribution studies in albino rats of Sprague–Dawley strain. Lipoprotein anchored dendrimeric nanoconstructs showed significant uptake by cancer cells as well as higher biodistribution of docetaxel to liver and spleen. It is concluded that these precisely synthesized engineered dendrimeric nanoconstructs could serve as promising drug carrier for fighting with the fatal disease, i.e., cancer, attributed to their defined targeting and therapeutic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Agarwal A, Gupta U, Asthana A, Jain NK (2009) Dextran conjugated dendritic nanoconstructs as potential vectors for anti-cancer agent. Biomaterials 30:3588–3596

    Article  CAS  Google Scholar 

  • Agashe HB, Dutta T, Garg M, Jain NK (2006) Investigations on the toxicological profile of functionalized fifth-generation poly (propylene imine) dendrimer. J Pharm Pharmacol 58:1491–1498

    Article  CAS  Google Scholar 

  • Agrawal U, Mehra NK, Gupta U, Jain NK (2013) Hyperbranched dendritic nano-carriers for topical delivery of dithranol. J Drug Target. doi:10.3109/1061186X.2013.771778

    Google Scholar 

  • Asthana A, Chauhan AS, Diwan PV, Jain NK (2005) Poly (amidoamine) (PAMAM) dendritic nanostructures for controlled site specific delivery of acidic anti-inflammatory active ingredient. AAPS Pharm Sci Tech 6:536–542

    Article  Google Scholar 

  • Bagari R, Bansal D, Gulbake A, Jain A, Soni V, Jain SK (2010) Chondroitin sulfate functionalized liposomes for solid tumor targeting. J Drug Target 19:251–257

    Article  Google Scholar 

  • Bhadra D, Bhadra S, Jain S, Jain NK (2005) A PEGylated dendritic nanoparticulate carrier of fluorouracil. Int J Pharm 257:111–124

    Article  Google Scholar 

  • Cadenas C, Vosbeck S, Hein EM, Hellwig B, Langer A, Hayen H, Franckenstein D, Büttner B, Hammad S, Marchan R, Hermes M, Selinski S, Rahnenführer J, Peksel B, Török Z, Vígh L, Hengstler JG (2012) Glycerophospholipid profile in oncogene-induced senescence. Biochim Biophys Acta 1821:1256–1268

    Article  CAS  Google Scholar 

  • Chen L, Sha X, Jiang X, Chen Y, Ren Q, Fang X (2013) Pluronic P105/F127 mixed micelles for the delivery of docetaxel against Taxol-resistant non-small cell lung cancer: optimization and in vitro, in vivo evaluation. Int J Nanomed 8:73–84

    CAS  Google Scholar 

  • Clarke SJ, Rivory LP (1999) Clinical pharmacokinetics of DTX. Clin Pharmacokinet 36:99–114

    Article  CAS  Google Scholar 

  • Corbin IR, Chen J, Cao W, Li H, Lund-Katz S, Zheng G (2007) Enhanced cancer-targeted delivery using engineered high density lipoprotein based nanocarriers. J Biomed Nanotechnol 3:367–376

    Article  CAS  Google Scholar 

  • Dong J, Guo H, Yang R, Li H, Wang S, Zhang J, Chen W (2011) Serum LDL- and HDL-cholesterol determined by ultracentrifugation and HPLC. J Lipid Res 52:383–388

    Article  CAS  Google Scholar 

  • Dong J, Guo H, Yang R, Li H, Wang S, Zhang J, Zhou W, Chen W (2012) A novel and precise method for simultaneous measurement of serum HDL and LDL subfractions and lipoprotein (a) cholesterol by ultracentrifugation and high-performance liquid chromatography. Clin Chim Acta 413:1071–1076

    Article  CAS  Google Scholar 

  • Gajbhiye V, Jain NK (2011) The treatment of Glioblastoma Xenografts by surfactant conjugated dendritic nano-conjugates. Biomaterials 32:6213–6225

    CAS  Google Scholar 

  • Gajbhiye V, Ganesh N, Barve J, Jain NK (2013) Synthesis, characterization and targeting potential of zidovudine loaded sialic acid conjugated-mannosylated poly(propyleneimine) dendrimers. Eur J Pharm Sci 48:668–679

    Article  CAS  Google Scholar 

  • Gupta U, Dwivedi SKD, Bid HK, Konwar R, Jain NK (2010) Ligand anchored dendrimers based nanoconstructs for effective targeting to cancer cells. Int J Pharm 393:185–196

    Article  CAS  Google Scholar 

  • Houghton P (2007) The sulphorhodamine (SRB) assay and other approaches to testing plant extracts and derived compounds for activities related to reputed anticancer activity. Methods 42:377–387

    Article  CAS  Google Scholar 

  • Jain A, Agarwal A, Majumder S, Lariya N, Khaya A, Agrawal H, Majumdar S, Agrawal GP (2010a) Mannosylated solid lipid nanoparticles as vectors for site-specific delivery of an anti-cancer drug. J Control Rel 148:359–367

    Article  CAS  Google Scholar 

  • Jain K, Kesharwani P, Gupta U, Jain NK (2010b) Dendrimer toxicity: let’s meet the challenge. Int J Pharm 394:122–142

    Article  CAS  Google Scholar 

  • Jia J, **ao Y, Liu J, Zhang W, He H, Chen L, Zhang M (2012) Preparation, characterizations, and in vitro metabolic processes of paclitaxel-loaded discoidal recombinant high-density lipoproteins. J Pharm Sci 101:2900–2908

    Article  CAS  Google Scholar 

  • Kader A, Pater A (2002) Loading anticancer drugs into HDL as well as LDL has little affect on properties of complexes and enhances cytotoxicity to human carcinoma cells. J Control Rel 80:29–44

    Article  CAS  Google Scholar 

  • Lo ST, Kumar A, Hsieh JT, Sun X (2013) Dendrimer nanoscaffolds for potential theranostics of prostate cancer with a focus on radiochemistry. Mol Pharm 10:793–812

    Article  CAS  Google Scholar 

  • Lodhi N, Mehra NK, Jain NK (2013) Development and characterization of dexamethasone mesylate anchored on multi walled carbon nanotubes. J Drug Target 21(1):67–76

    Article  CAS  Google Scholar 

  • Moura JA, Valduga CJ, Tavares ER, Kretzer IF, Maria DA, Maranhao RC (2011) Novel formulation of a methotrexate derivative with a lipid nanoemulsion. Int J Nanomed 6:2285–2295

    CAS  Google Scholar 

  • Ng KK, Lovell JF, Zheng G (2011) Lipoprotein inspired nanoparticles for cancer theranostics. Acc Chem Res 44:1105–1113

    Article  CAS  Google Scholar 

  • Oda MN, Hargreaves PL, Beckstead JA, Redmond KA, van Antwerpen R, Ryan RO (2006) Reconstituted high density lipoprotein enriched with the polyene antibiotic amphotericin B. J Lipid Res 47:260–267

    Article  CAS  Google Scholar 

  • Oliveira JM, Salgado AJ, Sousa N, Mano JF, Reis RL (2010) Dendrimers and derivatives as a potential therapeutic tool in regenerative medicine strategies-a review. Prog Polym Sci 35:1163–1194

    Article  CAS  Google Scholar 

  • Opitz AW, Czymmek KJ, Wickstrom E, Wagner NJ (2013) Uptake, efflux, and mass transfer coefficient of fluorescent PAMAM dendrimers into pancreatic cancer cells. Biochim Biophys Acta 1828:294–301

    Article  CAS  Google Scholar 

  • Patel SK, Gajbhiye V, Jain NK (2012) Synthesis, characterization and brain targeting potential of paclitaxel loaded thiamine-PPI nanoconjugates. J Drug Target 20:841–849

    Article  CAS  Google Scholar 

  • Perrot G, Langlois B, Devy J, Jeanne A, Verzeaux L, Almagro S, Sartelet H, Hachet C, Schneider C, Sick E, David M, Khrestchatisky M, Emonard H, Martiny L, Dedieu S (2012) LRP-1–CD44, a new cell surface complex regulating tumor cell adhesion. Mol Cell Biol 32:3293–3307

    Article  CAS  Google Scholar 

  • Pinzon-Daza M, Garzon R, Couraud P, Romero IA, Weksler B, Ghigo D, Bosia A, Riganti C (2012) The association of statins plus LDL receptor-targeted liposome-encapsulated doxorubicin increases in vitro drug delivery across blood-brain barrier cells. Br J Pharmacol 167:1431–1447

    Article  CAS  Google Scholar 

  • Pires LA, Hegg R, Freitas ER, Tavares ER, Almeida CP, Baracat EC, Maranhão RC (2012) Effect of neoadjuvant chemotherapy on low-density lipoprotein (LDL) receptor and LDL receptor-related protein 1 (LRP-1) receptor in locally advanced breast cancer. Braz J Med Biol Res 45:557–564

    Article  CAS  Google Scholar 

  • Saleh EM, El-Awady RA, Anis N (2013) Predictive markers for the response to 5-fluorouracil therapy in cancer cells: Constant-field gel electrophoresis as a tool for prediction of response to 5-fluorouracil-based chemotherapy. Oncol Lett 5:321–327

    CAS  Google Scholar 

  • She W, Luo K, Zhang C, Wang G, Geng Y, Li L, He B, Gu Z (2013) The potential of self-assembled, pH-responsive nanoparticles of mPEGylated peptide dendron-doxorubicin conjugates for cancer therapy. Biomaterials 34:1613–1623

    Article  CAS  Google Scholar 

  • Singh R, Mehra NK, Jain V, Jain NK (2013) Gemcitabine-loaded smart carbon nanotubes for effective targeting to cancer cell. J Drug Target. doi:0.3109/1061186X.2013.778264

    Google Scholar 

  • Szulc A, Appelhans D, Voit B, Bryszewska M, Klajnert B (2013) Studying complexes between PPI dendrimers and Mant-ATP. J Fluoresc 23:349–356

    Article  CAS  Google Scholar 

  • Wang MD, Kiss RS, Franklin V, McBride HM, Whitman SC, Marcel YL (2007) Different cellular traffic of LDL-cholesterol and acetylated LDL-cholesterol leads to distinct reverse cholesterol transport pathways. J Lipid Res 48:633–645

    Article  CAS  Google Scholar 

  • Webster DM, Sundaram P, Byrne ME (2013) Injectable nanomaterials for drug delivery: carriers, targeting moieties, and therapeutics. Euro J Pharm Biopharm. doi:10.1016/j.ejpb.2012.12.009

    Google Scholar 

  • Zhao L, Wei YM, Zhong XD, Liang Y, Zhang XM, Li W (2009) PK and tissue distribution of DTX in rabbits after i.v. administration of liposomal and injectable formulations. J Pharm Biomed Anal 49:989–996

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge All India Institute of Medical Sciences, New Delhi, India, Bhopal Memorial Health Care and Research Centre, Bhopal, India, and Tata memorial hospital, Mumbai, India, for providing facilities for TEM, LDL and HDL isolation and characterization and cancer cell line studies, respectively

Author Ms. Anupriya Jain is highly indebted to University grant commission, New Delhi, India for providing financial assistance in form of Junior Research Fellowship (JRF).

Conflict of interest

The authors report no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Jain.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2809 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, A., Jain, K., Mehra, N.K. et al. Lipoproteins tethered dendrimeric nanoconstructs for effective targeting to cancer cells. J Nanopart Res 15, 2003 (2013). https://doi.org/10.1007/s11051-013-2003-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-2003-9

Keywords

Navigation