Log in

Unique hierarchical structure and high thermoelectric properties of antimony telluride pillar arrays

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The p-type antimony telluride (Sb2Te3) pillar arrays with unique hierarchical architecture have been self-assembled in large scale by a simple vacuum thermal evaporation technique. The composition and the microstructure of the films are studied by X-ray diffraction, scanning electron microscopy with energy dispersive X-ray spectroscopy, and high-resolution transmission electron microscopy. The results show that the hierarchical film with multi-scale and multi-dimensional structure is well-oriented pillar arrays perpendicular to the substrate. A large number of nanowires (NWs) are assembled into a submicro/micro-scaled pillar, while antisite defects and dislocations as well as other defects are found in the one-dimensional NWs. The growth mechanism of such nanostructure is proposed and investigated. The thermoelectric (TE) properties, i.e., electrical conductivity (σ), Seebeck coefficient (S), and thermal conductivity (κ) of the films are measured. The properties of the hierarchical Sb2Te3 film have been greatly enhanced in comparison with those of the ordinary Sb2Te3 films. A TE dimensionless figure-of-merit ZT = 0.88 in the novel hierarchical Sb2Te3 film is obtained at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937

    Article  CAS  Google Scholar 

  • Cao AM, Hu JS, Liang HP, Wan LJ (2005) Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries. Angew Chem Int Ed 44:4391–4395

    Article  CAS  Google Scholar 

  • Carmo JP, Silva MF, Ribeiro JF, Wolffenbuttel RF, Alpuim P, Rocha JG, Goncalves LM, Correia JH (2011) Design, simulation and fabrication of optical filters for narrow band imaging in endoscopic capsules. Microsyst Technol 17:1283–1291

    Article  CAS  Google Scholar 

  • Chen Z, Cao MH (2011) Synthesis, characterization, and hydrophobic properties of Bi2S3 hierarchical nanostructures. Mater Res Bull 46:555–562

    Article  CAS  Google Scholar 

  • Chen J, Sun T, Sim DH, Peng HY, Wang HT, Fan SF, Hng HH, Ma J, Chen XD, Wu T, Yan QY (2010) Sb2Te3 nanoparticles with enhanced seebeck coefficient and low thermal conductivity. Chem Mater 22:3086–3092

    Article  CAS  Google Scholar 

  • Datta A, Paul J, Kar A, Patra A, Sun ZL, Chen LD, Martin J, Nolas G (2010) Facile chemical synthesis of nanocrystalline thermoelectric alloys based on Bi–Sb–Te–Se. Cryst Growth Des 10:3983–3989

    Article  CAS  Google Scholar 

  • Deng Y, **ang Y, Song YZ (2009) Template-free synthesis and transport properties of Bi2Te3 ordered nanowire arrays via a physical vapor process. Cryst Growth Des 9:3079–3082

    Article  CAS  Google Scholar 

  • Dhar SN, Desai CF (2002) Sb2Te3 and In0.2Sb1.8Te3: a comparative study of thermoelectric and related properties. Philos Mag Lett 82:581–587

    Article  CAS  Google Scholar 

  • Drasar C, Steinhart M, Lostak P, Shin HK, Dyck JS, Uher C (2005) Transport coefficients of titanium-doped Sb2Te3 single crystals. J Solid State Chem 178:1301–1307

    Article  CAS  Google Scholar 

  • Dresselhaus MS, Chen G, Tang MY, Yang RG, Lee H, Wang DZ, Ren ZF, Fleurial JP, Gogna P (2007) New directions for low-dimensional thermoelectric materials. Adv Mater 19:1043–1053

    Article  CAS  Google Scholar 

  • Francioso L, Pascali CD, Farella I, Martucci C, Cretì P, Siciliano P, Perrone A (2011) Flexible thermoelectric generator for ambient assisted living wearable biometric sensors. J Power Sources 196:3239–3243

    Article  CAS  Google Scholar 

  • Groshens TJ, Gedridge RW, Lowema CK (1994) Room-temperature MOCVD of Sb2Te3 films and solution precipitation of M2Te3 (M = Sb, Bi) powders via a novel (N,N-dimethylamino) trimethylsilane elimination-reaction. Chem Mater 6:727–729

    Article  CAS  Google Scholar 

  • Guo JY, Zhang YW, Lu C (2008) Effects of wetting and misfit strain on the pattern formation of heteroepitaxially grown thin films. Comput Mater Sci 44:174–179

    Article  CAS  Google Scholar 

  • Harman TC, Taylor PJ, Walsh MP, LaForge BE (2002) Quantum dot superlattice thermoelectric materials and devices. Science 297:2229–2232

    Article  CAS  Google Scholar 

  • Hsu KF, Loo S, Guo F, Chen W, Dyck JS, Uher C, Hogan T, Polychroniadis EK, Kanatzidis MG (2004) Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science 303:818–821

    Article  CAS  Google Scholar 

  • Huang BL, Lawrence C, Gross A, Hwang GS, Ghafouri N, Lee SW, Kim H, Li CP, Uher C, Najafi K, Kaviany M (2008) Low-temperature characterization and micropatterning of coevaporated Bi2Te3 and Sb2Te3 films. J Appl Phys 104:113710–113718

    Article  Google Scholar 

  • Kato R, Maesono A, Tye RP (2001) Thermal conductivity measurement of submicron-thick films deposited on substrates by modified ac calorimetry (laser-heating angstrom method). Int J Thermophys 22:617–629

    Article  CAS  Google Scholar 

  • Kim TS, Chun BS, Lee JK, Jung HG (2005) Thermoelectric properties of gas atomized p-type Sb2Te3-25%Bi2Te3 alloys. 12th international symposium on metastable and nano-materials (ISMANAM-2005), Paris, France, July, pp 710–713

  • Lan YC, Poudel B, Ma Y, Wang DZ, Dresselhaus MS, Chen G, Ren ZF (2009) Structure study of bulk nanograined thermoelectric bismuth antimony telluride. Nano Lett 9:1419–1422

    Article  CAS  Google Scholar 

  • Lee JM, Farhangfar S, Lee J, Cagnon L, Scholz R, Gosele U, Nielsch K (2008a) Tuning the crystallinity of thermoelectric Bi2Te3 nanowire arrays grown by pulsed electrodeposition. Nanotechnology 19:365701

    Article  Google Scholar 

  • Lee JS, Brittman S, Yu D, Park H (2008b) Vapor-liquid-solid and vapor-solid growth of phase-change Sb2Te3 nanowires and Sb2Te3/GeTe nanowire heterostructures. J Am Chem Soc 130:6252–6258

    Article  CAS  Google Scholar 

  • Liu B, Zeng HC (2004) Mesoscale organization of CuO nanoribbons: formation of “Dandelions”. J Am Chem Soc 126:8124–8125

    Article  CAS  Google Scholar 

  • Liu XY, Sun P, Ren S, Wen LS (2008) Electrodeposition of high-pressure-stable bcc phase bismuth flowerlike micro/nanocomposite architectures at room temperature without surfactant. Electrochem Comm 10:136–140

    Article  CAS  Google Scholar 

  • Liu WS, Yan X, Chen G, Ren ZF (2012) Recent advances in thermoelectric nanocomposites. Nano Energy 1:42–56

    Article  Google Scholar 

  • Ma Y, Hao Q, Poudel B, Lan YC, Yu B, Wang DZ, Chen G, Ren ZF (2008) Enhanced thermoelectric figure-of-merit in p-type nanostructured bismuth antimony tellurium alloys made from elemental chunks. Nano Lett 8:2580–2584

    Article  CAS  Google Scholar 

  • Ma SF, Liang J, Zhao JF, Xu BS (2010) Synthesis, characterization and growth mechanism of flower-like vanadium carbide hierarchical nanocrystals. Cryst Eng Commun 12:750–754

    CAS  Google Scholar 

  • Martin J, Wang L, Chen L, Nolas GS (2009) Enhanced Seebeck coefficient through energy-barrier scattering in PbTe nanocomposites. Phys Rev B 79:115311–115316

    Article  Google Scholar 

  • Meister S, Peng HL, McIlwrath K, Jarausch K, Zhang XF, Cui Y (2006) Synthesis and characterization of phase-change nanowires. Nano Lett 6:1514–1517

    Article  CAS  Google Scholar 

  • Mu CF, Yao QZ, Qu XF, Zhou GT, Li ML, Fu SQ (2010) Controlled synthesis of various hierarchical nanostructures of copper sulfide by a facile microwave irradiation method. Colloid Surf A 371:14–21

    Article  CAS  Google Scholar 

  • Peranio N, Eibl O (2006) Structural and thermoelectric properties of epitaxially grown Bi2Te3 thin films and superlattices. J Appl Phys 100:114306–114316

    Article  Google Scholar 

  • Poudel B, Hao Q, Ma Y, Lan YC, Minnich A, Yu B, Yan X, Wang DZ, Muto A, Vashaee D, Chen XY, Liu JM, Dresselhaus MS, Chen G, Ren ZF (2008) High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320:634–638

    Article  CAS  Google Scholar 

  • Qin Y, Wang XD, Wang ZL (2008) Microfibre-nanowire hybrid structure for energy scavenging. Nature 451(809):809–813

    Article  CAS  Google Scholar 

  • Rowe DM (2006) Thermoelectric properties of bismuth antimony telluride solid solutions. Thermoelectrics handbook: macro to nano. Taylor & Francis Ltd, New York, pp 433–434

  • Scheele M, Oeschler N, Veremchuk I, Reinsberg KG, Kreuziger AM, Kornowski A, Broekaert J, Klinke C, Weller H (2010) ZT enhancement in solution-grown Sb(2−x)Bi x Te3 nanoplatelets. ACS Nano 4:4283–4291

    Article  CAS  Google Scholar 

  • Silva LWD, Kaviany M, Uher C (2005) Thermoelectric performance of films in the bismuth–tellurium and antimony–tellurium systems. J Appl Phys 97:114903

    Article  Google Scholar 

  • Srivastava P, Singh K (2012) Low temperature synthesized thermoelectric Sb2Te3 irregular nanoflakes. Mater Lett 75:42–44

    Article  CAS  Google Scholar 

  • Sumithra S, Takas NJ, Misra DK, Nolting WM, Poudeu PFP, Stokes KL (2011) Enhancement in thermoelectric figure of merit in nanostructured Bi2Te3 with semimetal nanoinclusions. Adv Energy Mater 1:1141–1147

    Article  CAS  Google Scholar 

  • Sun ZL, Liufu SC, Chen XH, Chen LD (2011) Enhanced thermoelectric properties of Bi0.5Sb1.5Te3 films by chemical vapor transport process. ACS Appl Mater Int 3:1390–1393

    Article  CAS  Google Scholar 

  • Tan M, Deng Y, Wang Y, Zhang ZW, Liang HM, Yang JY (2011) Oriented growth of A2Te3 (A = Sb, Bi) films and their devices with enhanced thermoelectric performance. Sens Actuator A 171:252–259

    Article  CAS  Google Scholar 

  • Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B (2001) Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413:597–602

    Article  CAS  Google Scholar 

  • Vomiero A, Concina I, Comini E, Soldano C, Ferroni M, Faglia G, Sberveglieri G (2012) One-dimensional nanostructured oxides for thermoelectric applications and excitonic solar cells. Nano Energy 1:372–390

    Article  Google Scholar 

  • Wang WZ, Poudel B, Yang J, Wang DZ, Ren ZF (2005) High-yield synthesis of single-crystalline antimony telluride hexagonal nanoplates using a solvothermal approach. J Am Chem Soc 127:13792–13793

    Article  CAS  Google Scholar 

  • Wang RY, Feser JP, Lee JS, Talapin DV, Segalman R, Majumdar A (2008) Enhanced thermopower in PbSe nanocrystal quantum dot superlattices. Nano Lett 8:2283–2288

    Article  CAS  Google Scholar 

  • Wang WS, Hu YX, Goebl J, Lu ZD, Zhen L, Yin YD (2009) Shape- and size-controlled synthesis of calcium molybdate doughnut-shaped microstructures. J Phys Chem C 113:16414–16423

    Article  CAS  Google Scholar 

  • Wang S, **e WJ, Li H, Tang XF (2010) High performance n-type (Bi, Sb)2(Te, Se)3 for low temperature thermoelectric generator. J Phys D 43:335404

    Article  Google Scholar 

  • Wang YQ, Wei ZD, Gao B, Qi XQ, Li L, Zhang Q, **a MR (2011) The electrochemical oxidation of methanol on a Pt/TNTs/Ti electrode enhanced by illumination. J Power Sources 196:1132–1135

    Article  CAS  Google Scholar 

  • Weintraub B, Wei Y, Wang ZL (2009) Optical fiber/nanowire hybrid structures for efficient three-dimensional dye-sensitized solar cells. Angew Chem Int Ed 48:8981–8985

    Article  CAS  Google Scholar 

  • Whang D, ** S, Wu Y, Lieber CM (2003) Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett 3:1255–1259

    Article  CAS  Google Scholar 

  • Wisedsri R, Chaisuwan T, Wongkasemjit S (2011) Hierarchical architecture of Bi12TiO20 via ethylene glycol-mediated synthesis route. Mater Lett 65:3237–3240

    Article  CAS  Google Scholar 

  • **ao F, Hangarter C, Yoo B, Rheem Y, Lee KH, Myung NV (2008) Recent progress in electrodeposition of thermoelectric thin films and nanostructures. Electrochim Acta 53:8103–8117

    Article  CAS  Google Scholar 

  • Xu B, Wang J, Yu HB, Gao H (2011) Large-scale synthesis of hierarchical flowerlike boehmite architectures. J Environ Sci 23:S49–S52

    Article  Google Scholar 

  • Yamashita O, Tomiyoshi S (2004) High performance n-type bismuth telluride with highly stable thermoelectric figure of merit. J Appl Phys 95:6277–6283

    Article  CAS  Google Scholar 

  • Yan D, Yan PX, Yue GH, Liu JZ, Chang JB, Yang Q (2007) Self-assembled flower-like hierarchical spheres and nanobelts of manganese oxide by hydrothermal method and morphology control of them. Chem Phys Lett 440:134–138

    Article  CAS  Google Scholar 

  • Yan QY, Chen H, Zhou WW, Hng HH, Boey FYC, Ma J (2008) A simple chemical approach for PbTe nanowires with enhanced thermoelectric properties. Chem Mater 20:6298–6300

    Article  CAS  Google Scholar 

  • Zeng HC (2006) Synthetic architecture of interior space for inorganic nanostructures. J Mater Chem 16:649–662

    Article  CAS  Google Scholar 

  • Zhao LD, Zhang BP, Liu WS, Zhang HL, Li JF (2009) Effects of annealing on electrical properties of n-type Bi2Te3 fabricated by mechanical alloying and spark plasma sintering. J Alloy Compd 467:91–97

    Article  CAS  Google Scholar 

  • Zhou L, Wang W, Xu H, Sun S, Shang M (2009) Bi2O3 Hierarchical nanostructures: controllable synthesis, growth mechanism, and their application in photocatalysis. Chem Eur J 15:1776–1782

    Article  CAS  Google Scholar 

  • Zhou J, Wang YY, Sharp J, Yang RG (2012) Optimal thermoelectric figure of merit in Bi2Te3/Sb2Te3 quantum dot nanocomposites. Phys Rev B 85:115320

    Article  Google Scholar 

  • Zou H, Rowe DM, Williams SGK (2002) Peltier effect in a co-evaporated Sb2Te3(p)-Bi2Te3(n) thin film thermocouple. Thin Solid Films 408:270–274

    Article  CAS  Google Scholar 

  • Zuev YM, Lee JS, Galloy C, Park H, Kim P (2010) Diameter dependence of the transport properties of antimony telluride nanowires. Nano Lett 10:3037–3040

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the State Key Development Program for Basic Research of China (Grant No. 2012CB933200), National Natural Science Foundation of China (Nos. 51172008 and 51002006), Bei**g Technology Topic Program (No. Z111100066511009), Research Fund for Doctor Station Sponsored by the Ministry of Education of China (20111102110035) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Deng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 291 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, M., Deng, Y. & Wang, Y. Unique hierarchical structure and high thermoelectric properties of antimony telluride pillar arrays. J Nanopart Res 14, 1204 (2012). https://doi.org/10.1007/s11051-012-1204-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1204-y

Keywords

Navigation