Log in

Structural, energetic, and electronic properties of hydrogenated aluminum arsenide clusters

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The chemisorptions of hydrogen on aluminum arsenide clusters are studied with density functional theory (DFT). The on-top site is identified to be the most favorable chemisorptions site for hydrogen. And the Al-top site is the preferred one in the most cases for one hydrogen adsorption in (AlAs) n (n = 2, 5, 6, 8–15) clusters. Top on the neighboring Al and As atoms ground-state structures are found for two hydrogen adsorption on (AlAs) n except for (AlAs)2 cluster. The Al–As bond lengths decrease generally as the size of the cluster increases. And there is a slight increase in the mean Al–As bond lengths after H adsorption on the lowest-energy sites of the most AlAs clusters. In general, the binding energy of H and 2H are both found to decrease with an increase in the cluster size. And the result shows that large binding energies (BE) of a single hydrogen atom on small AlAs clusters and large highest occupied and lowest unoccupied molecular-orbital gaps for (AlAs)H and (AlAs)3H make these species behaving like magic clusters. Calculations on two hydrogen atoms on (AlAs) n clusters show large BE for (AlAs) n H2 with an odd number of n. The stability of these complexes is further studied from the fragmentation energies. (AlAs)7H2 and (AlAs)9H2 clusters are again suggested to be the stable clusters. On the other hand both the fragmentation energy and the binding energy for (AlAs)13H are close to the lowest values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andreoni W (1992) III–V semiconductor microclusters: structures, stability, and melting. Phys Rev B 45(8):4203–4207

    Article  CAS  Google Scholar 

  • Aranovich GL, Donohue MD (1999) Phase loops in density-functional-theory calculations of adsorption in nanoscale pores. Phys Rev E 60(5):5552–5560

    Article  CAS  Google Scholar 

  • Archibong EF, Marynick DS (2003) A computational study of the electron detachment energies of Al2As 2 and Al3As 3 . Mol Phys 101(17):2785–2792

    Article  CAS  Google Scholar 

  • Archibong EF, St-Amant A (2002a) An ab initio and density functional Study of Al3As, Al3As, AlAs3, and AlAs 3 . J Phys Chem A 106(32):7390–7398

    Article  CAS  Google Scholar 

  • Archibong EF, St-Amant A (2002b) Electron detachment energies of AlAs and AlAs 2 . Chem Phys Lett 355(3–4):249–256

    Article  CAS  Google Scholar 

  • Asmis KR, Taylor TR, Neumark DM (1999a) Anion photoelectron spectroscopy of B2N. J Chem Phys 111(19):8838–8851

    Article  CAS  Google Scholar 

  • Asmis KR, Taylor TR, Neumark DM (1999b) Anion photoelectron spectroscopy of B3N. J Chem Phys 111(23):10491–10500

    Article  CAS  Google Scholar 

  • Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652

    Article  CAS  Google Scholar 

  • Chen L, Cooper AC, Pez GP, Chen HS (2007) Density functional study of sequential H2 dissociative chemisorption on a Pt6 cluster. J Phys Chem C 111(14):5514–5519

    Article  CAS  Google Scholar 

  • Costales A, Kandalam AK, Franco R, Pandey R (2002) Theoretical study of structural and vibrational properties of (AlP) n , (AlAs) n , (GaP) n , (GaAs) n , (InP) n , and (InAs) n clusters with n = 1, 2, 3. J Phys Chem B 106(8):1940–1944

    Article  CAS  Google Scholar 

  • Feng PY, Dai D, Balasubramanian K (2000) Electronic states of Al3As2, Al3As 2 , Al3As +2 , Al2As3, Al2As 3 , and Al2As +3 . J Phys Chem A 104(2):422–432

    Article  CAS  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery Jr JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghava-chari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2004) Computer code GAUSSIAN03. Gaussian Inc., Wallingford

  • Fu Q, Negro E, Chen G, Law DC, Li CH, Hicks RF, Raghavachari K (2002) Hydrogen adsorption on phosphorus-rich (2 × 1) indium phosphide (001). Phys Rev B 65(7):075318-1-6

    Google Scholar 

  • Gomez H, Taylor TR, Neumark DM (2001) Anion photoelectron spectroscopy of aluminum phosphide clusters. J Phys Chem A 105(28):6886–6893

    Article  CAS  Google Scholar 

  • Guo L (2008) Evolution of the electronic structure and properties of neutral and charged aluminum arsenide clusters: a comprehensive analysis. Comput Mater Sci 42(3):489–496

    Article  CAS  Google Scholar 

  • Gutsev GL, Johnson E, Mochena MD, Bauschlicher Jr CW (2008) The structure and energetics of (GaAs) n , (GaAs) n , and (GaAs) + n (n = 2–15). J Chem Phys 128(14):144707-1-9

    Google Scholar 

  • Halls MD, Velkovski J, Schlegel HB (2001) Harmonic frequency scaling factors for Hartree-Fock, S-VWN, B-LYP, B3-LYP, B3-PW91 and MP2 with the Sadlej pVTZ electric property basis set. Theor Chem Acc 105(6):413–421

    Article  CAS  Google Scholar 

  • Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82(1):270–283

    Article  CAS  Google Scholar 

  • Hou PX, Xu ST, Zhe Y, Yang QH, Liu C, Cheng HM (2003) Hydrogen adsorption/desorption behavior of multi-walled carbon nanotubes with different diameters. Carbon 41(13):2471–2476

    Article  CAS  Google Scholar 

  • Kawamura H, Kumar V, Sun Q, Kawazoe Y (2002) Magic behavior and bonding nature in hydrogenated aluminum clusters. Phys Rev B 65(4):045406-1-11

    Google Scholar 

  • Li S, Van Zee RJ, Weltner W (1993) Far-infrared spectra of small gallium phosphide, arsenide, and antimonide molecules in rare-gas matrixes at 4 K. J Phys Chem 97(44):11393–11396

    Article  CAS  Google Scholar 

  • Lide DR (2000) CRC handbook of chemistry and physics. CRC Press, New York

    Google Scholar 

  • Mainardi DS, Balbuena PB (2003) Hydrogen and oxygen adsorption on Rhn (n = 1–6) clusters. J Phys Chem A 107(48):10370–10380

    Article  CAS  Google Scholar 

  • Quek HK, Feng YP, Ong CK (1997) Tight binding molecular dynamics studies of GamAsn and AlmAsn clusters. Z Phys D 42(4):309–313

    Article  CAS  Google Scholar 

  • Schailey R, Ray AK (2000) A cluster approach to hydrogen chemisorption on the GaAs(1 0 0) surface. Comput Mater Sci 22(3–4):169–179

    Google Scholar 

  • Taylor TR, Asmis KR, Xu CS, Neumark DM (1998) Evolution of electronic structure as a function of size in gallium phosphide semiconductor clusters. Chem Phys Lett 297(1–2):133–140

    Article  CAS  Google Scholar 

  • Tozzini V, Buda F, Fasolino A (2001) Fullerene-like III–V clusters: a density functional theory prediction. J Phys Chem B 105(50):12477–12480

    Article  CAS  Google Scholar 

  • Zhu X (2003) Spectroscopic properties for Al2As, AlAs2, and their ions. J Mol Struct 638(1–3):99–105

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 20603021), the Youth Foundation of Shanxi (Grant No. 2007021009), and the Youth Academic Leader of Shanxi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, L. Structural, energetic, and electronic properties of hydrogenated aluminum arsenide clusters. J Nanopart Res 13, 2029–2039 (2011). https://doi.org/10.1007/s11051-010-9957-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-9957-7

Keywords

Navigation