Log in

Contact analysis of deep groove ball bearings in multibody systems

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

In traditional methods of contact analysis, kinematic constraints of joints in a multibody system have to be released and functions of the joints are replaced by contact forces. This methodology is not optimal when the clearance in a joint is extremely small, because in this case unnecessarily releasing joint constraints could bring a negative effect on the numerical stability and efficiency. In practice, a majority of revolute joints are composed of a pair of deep groove ball bearings with tiny clearances. Their contact situations are complex and require a lot of description parameters. In the traditional methods, these parameters are extracted from relative motion between bodies, whereas in this paper they are treated as unknown variables. Among a variety of contacts between a ball and its raceways or its pockets, the most significant one is the stable contact situation where a ball can stably carry loads. The stable contacts impose some restrictions on these parameters, so that five parameters are sufficient for representing contact locations and contact forces of all the balls in the stable contact state. The five variables can be determined by five equations provided by the relationship between contact forces and joint reaction forces. On the basis of these ideas, a methodology without the need of releasing the kinematic constraints of joints is proposed for the contact analysis of such revolute joints. The proposed method, in which the ball that is in contact with its raceways and the contact forces acting on such a ball as well as the instants of likely impacts can be known, is illustrated by the two numerical examples in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Flores, P., Ambrósio, J., Claro, J.P.: Dynamic analysis for planar multibody mechanical systems with lubricated joints. Multibody Syst. Dyn. 12(1), 47–74 (2004)

    Article  MATH  Google Scholar 

  2. Flores, P., Lankarani, H.M., Ambrósio, J., Claro, J.C.P.: Modelling lubricated revolute joints in multibody mechanical systems. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 218(4), 183–190 (2004)

    Google Scholar 

  3. Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Spatial revolute joints with clearances for dynamic analysis of multi-body systems. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 220(4), 257–271 (2006)

    Google Scholar 

  4. Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M., Koshy, C.S.: Dynamics of multibody systems with spherical clearance joints. J. Comput. Nonlinear Dyn. 1(3), 240–247 (2006)

    Article  Google Scholar 

  5. Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M., Koshy, C.S.: A study on dynamics of mechanical systems including joints with clearance and lubrication. Mech. Mach. Theory 41(3), 247–261 (2006)

    Article  MATH  Google Scholar 

  6. Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Dynamic behaviour of planar rigid multi-body systems including revolute joints with clearance. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 221(2), 161–174 (2007)

    Article  Google Scholar 

  7. Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Translational joints with clearance in rigid multibody systems. J. Comput. Nonlinear Dyn. 3(1), 0110071 (2008)

    Article  Google Scholar 

  8. Flores, P.: Modeling and simulation of wear in revolute clearance joints in multibody systems. Mech. Mach. Theory 44(6), 1211–1222 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Flores, P., Lankarani, H.M.: Spatial rigid-multibody systems with lubricated spherical clearance joints: modeling and simulation. Nonlinear Dyn. 60, 99–114 (2010)

    Article  MATH  Google Scholar 

  10. Flores, P., Leine, R., Glocker, C.: Modeling and analysis of planar rigid multibody systems with translational clearance joints based on the non-smooth dynamics approach. Multibody Syst. Dyn. 23(2), 165–190 (2010)

    Article  MathSciNet  Google Scholar 

  11. Flores, P., Koshy, C.S., Lankarani, H.M., Ambrósio, J., Claro, J.C.P.: Numerical and experimental investigation on multibody systems with revolute clearance joints. Nonlinear Dyn. 65(4), 383–398 (2011)

    Article  Google Scholar 

  12. Flores, P., Lankarani, H.M.: Dynamic response of multibody systems with multiple clearance joints. J. Comput. Nonlinear Dyn. 7(3), 0310031 (2012)

    Google Scholar 

  13. Tian, Q., Zhang, Y.Q., Chen, L.P., Flores, P.: Dynamics of spatial flexible multibody systems with clearance and lubricated spherical joints. Comput. Struct. 87(13–14), 913–929 (2009)

    Article  Google Scholar 

  14. Tian, Q., Zhang, Y.Q., Chen, L.P., Yang, J.Z.: Simulation of planar flexible multibody systems with clearance and lubricated revolute joints. Nonlinear Dyn. 60, 489–511 (2010)

    Article  MATH  Google Scholar 

  15. Tian, Q., Liu, C., Machado, M., Flores, P.: A new model for dry and lubricated cylindrical joints with clearance in spatial flexible multibody systems. Nonlinear Dyn. 64, 25–47 (2011)

    Article  MATH  Google Scholar 

  16. Liu, C., Tian, Q., Hu, H.Y.: Dynamics and control of a spatial rigid-flexible multibody system with multiple cylindrical clearance joints. Mech. Mach. Theory 52, 106–129 (2012)

    Article  Google Scholar 

  17. Muvengei, O., Kihiu, J., Ikua, B.: Dynamic analysis of planar multi-body systems with LuGre friction at differently located revolute clearance joints. Multibody Syst. Dyn. 28(4), 369–393 (2012)

    Article  MathSciNet  Google Scholar 

  18. Muvengei, O., Kihiu, J., Ikua, B.: Numerical study of parametric effects on the dynamic response of planar multi-body systems with differently located frictionless revolute clearance joints. Mech. Mach. Theory 53, 30–49 (2012)

    Article  Google Scholar 

  19. Muvengei, O., Kihiu, J., Ikua, B.: Dynamic analysis of planar rigid-body mechanical systems with two-clearance revolute joints. Nonlinear Dyn. 73(1–2), 259–273 (2013)

    Article  MathSciNet  Google Scholar 

  20. Bai, Z.F., Zhao, Y.: Dynamic behaviour analysis of planar mechanical systems with clearance in revolute joints using a new hybrid contact force model. Int. J. Mech. Sci. 54, 190–205 (2012)

    Article  Google Scholar 

  21. Bai, Z.F., Zhao, Y.: Dynamics modeling and quantitative analysis of multibody systems including revolute clearance joint. Precis. Eng. 36(4), 554–567 (2012)

    Article  Google Scholar 

  22. Zhuang, F.F., Wang, Q.: Modeling and simulation of the nonsmooth planar rigid multibody systems with frictional translational joints. Multibody Syst. Dyn. 29(4), 403–423 (2013)

    MathSciNet  Google Scholar 

  23. Flores, P., Ambrósio, J.: On the contact detection for contact-impact analysis in multibody systems. Multibody Syst. Dyn. 24(1), 103–122 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. Lee, K.: A short note for numerical analysis of dynamic contact considering impact and a very stiff spring-damper constraint on the contact point. Multibody Syst. Dyn. 26(4), 425–439 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. Rodriguez, A., Bowling, A.: Solution to indeterminate multipoint impact with frictional contact using constraints. Multibody Syst. Dyn. 28(4), 313–330 (2012)

    Article  MathSciNet  Google Scholar 

  26. Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Influence of the contact-impact force model on the dynamic response of multi-body systems. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 220(1), 21–34 (2006)

    Google Scholar 

  27. Flores, P., Machado, M., Silva, M.T., Martins, J.M.: On the continuous contact force models for soft materials in multibody dynamics. Multibody Syst. Dyn. 25(3), 357–375 (2011)

    Article  MATH  Google Scholar 

  28. Machado, M., Moreira, P., Flores, P., Lankarani, H.M.: Compliant contact force models in multibody dynamics: evolution of the Hertz contact theory. Mech. Mach. Theory 53, 99–121 (2012)

    Article  Google Scholar 

  29. Flores, P., Ambrósio, J., Claro, J.P., Lankarani, H.M.: Kinematics and Dynamics of Multibody Systems with Imperfect Joints: Models and Case Studies. Lecture Notes in Applied and Computational Mechanics, vol. 34. Springer, Berlin (2008)

    Google Scholar 

  30. Gilardi, G., Sharf, I.: Literature survey of contact dynamics modeling. Mech. Mach. Theory 37(10), 1213–1239 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  31. Djerassi, S.: Collision with friction. Part A. Newton’s hypothesis. Multibody Syst. Dyn. 21(1), 37–54 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  32. Djerassi, S.: Collision with friction. Part B. Poisson’s and Stornge’s hypotheses. Multibody Syst. Dyn. 21(1), 55–70 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  33. Qi, Z.H., Xu, Y.S., Luo, X.M., Yao, S.J.: Recursive formulation of multibody systems with frictional joints based on the interaction between bodies. Multibody Syst. Dyn. 24(2), 133–166 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  34. Qi, Z.H., Luo, X.M., Huang, Z.H.: Frictional contact analysis of spatial prismatic joints in multibody systems. Multibody Syst. Dyn. 26(4), 441–468 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  35. Harris, T.A.: Rolling Bearing Analysis. Wiley, New York (2001)

    Google Scholar 

  36. De Mul, J.M., Vree, J.M., Maas, D.A.: Equilibrium and associated load distribution in ball and roller bearings loaded in five degrees of freedom while neglecting friction. Part I. General theory and application to ball bearings. J. Tribol. 111(1), 142–148 (1989)

    Article  Google Scholar 

  37. De Mul, J.M., Vree, J.M., Maas, D.A.: Equilibrium and associated load distribution in ball and roller bearings loaded in five degrees of freedom while neglecting friction. Part II. Application to roller bearings and experimental verification. J. Tribol. 111(1), 149–155 (1989)

    Article  Google Scholar 

  38. Meeks, C.R., Tran, L.: Ball bearing dynamic analysis using computer methods. Part I. Analysis. J. Tribol. 118(1), 52–58 (1996)

    Article  Google Scholar 

  39. Yao, T.Q., Chi, Y.L., Huang, Y.Y.: Research on flexibility of bearing rings for multibody contact dynamics of rolling bearings. Proc. Eng. 31, 586–594 (2012)

    Article  Google Scholar 

  40. Tiwari, M., Gupta, K., Prakash, O.: Effect of radial internal clearance of a ball bearing on the dynamics of a balanced horizontal rotor. J. Sound Vib. 238(5), 723–756 (2000)

    Article  Google Scholar 

  41. Tiwari, M., Gupta, K., Prakash, O.: Dynamic response of an unbalanced rotor supported on ball bearings. J. Sound Vib. 238(5), 757–779 (2000)

    Article  Google Scholar 

  42. Harsha, S.P., Sandeep, K., Prakash, R.: Non-linear dynamic behaviors of rolling element bearings due to surface waviness. J. Sound Vib. 272(3–5), 557–580 (2004)

    Article  Google Scholar 

  43. Harsha, S.P.: Nonlinear dynamic response of a balanced rotor supported by rolling element bearings due to radial internal clearance effect. Mech. Mach. Theory 41(6), 688–706 (2006)

    Article  MATH  Google Scholar 

  44. Upadhyay, S.H., Harsha, S.P., Jain, S.C.: Analysis of nonlinear phenomena in high speed ball bearings due to radial clearance and unbalanced rotor effects. J. Vib. Control 16(1), 65–88 (2010)

    Article  MATH  Google Scholar 

  45. Sopanen, J., Mikkola, A.: Dynamic model of a deep-groove ball bearing including localized and distributed defects. Part 1. Theory. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 217(3), 201–211 (2003)

    Google Scholar 

  46. Sopanen, J., Mikkola, A.: Dynamic model of a deep-groove ball bearing including localized and distributed defects. Part 2. Implementation and results. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 217(3), 201–211 (2003)

    Google Scholar 

  47. Xu, L.X., Yang, Y.H., Li, Y.G., Li, C.N., Wang, S.Y.: Modeling and analysis of planar multibody systems containing deep groove ball bearing with clearance. Mech. Mach. Theory 56, 69–88 (2012)

    Article  Google Scholar 

  48. Xu, L.X., Li, Y.G.: An approach for calculating the dynamic load of deep groove ball bearing joints in planar multibody systems. Nonlinear Dyn. 70(3), 2145–2161 (2012)

    Article  Google Scholar 

  49. Bauchau, O.A.: Flexible Multibody Dynamics. Springer, New York (2010)

    Google Scholar 

  50. Kunkel, P., Mehrmann, V.L.: Differential-Algebraic Equations: Analysis and Numerical Solution. European Mathematical Society, Zurich (2006)

    Book  Google Scholar 

  51. Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1(1), 1–16 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  52. Shabana, A.A.: Dynamics of Multibody Systems. Cambridge University Press, London (2005)

    Book  MATH  Google Scholar 

  53. Stacke, L.E., Fritzson, D.: Dynamic behaviour of rolling bearings: simulations and experiments. Proc. Inst. Mech. Eng., Part J J. Eng. Tribol. 215(6), 499–508 (2001)

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported by the China National Science Foundation under grant No. 11372057.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaohui Qi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, Z., Wang, G. & Zhang, Z. Contact analysis of deep groove ball bearings in multibody systems. Multibody Syst Dyn 33, 115–141 (2015). https://doi.org/10.1007/s11044-014-9412-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-014-9412-0

Keywords

Navigation