Log in

Solution methods for the double-support indeterminacy in human gait

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

There is a growing interest in predicting the gait motion of real subjects under virtual conditions, e.g., to anticipate the result of surgery or to help in the design of prosthetic/orthotic devices. To this end, the motion parameters can be considered as the design parameters of an optimization problem. In this context, determination of the joint efforts for a given motion is a required step for the subsequent evaluation of cost function and constraints. In the double-support phase of gait, the ground reaction forces include twelve unknowns, rendering the inverse dynamics problem indeterminate if no force plate data are available. In this paper, several methods for solving the inverse dynamics problem of the human gait during the double-support phase, using force plates or not, are presented and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ackermann, M., van den Bogert, A.J.: Optimality principles for model-based prediction of human gait. J. Biomech. 43(6), 1055–1060 (2010)

    Article  Google Scholar 

  2. Ackermann, M., Schiehlen, W.: Dynamic analysis of human gait disorder and metabolical cost estimation. Arch. Appl. Mech. 75(10–12), 569–594 (2006)

    Article  MATH  Google Scholar 

  3. Alonso, F., Cuadrado, J., Lugrís, U., Pintado, P.: A compact smoothing-differentiation and projection approach for the kinematic data consistency of biomechanical systems. Multibody Syst. Dyn. 24(1), 67–80 (2010)

    Article  MATH  Google Scholar 

  4. Ambrósio, J.A.C., Kecskeméthy, A.: Multibody dynamics: computational methods and applications. In: Multibody Dynamics of Biomechanical Models for Human Motion via Optimization, pp. 245–272. Springer, Dordrecht (2007)

    Google Scholar 

  5. Anderson, F.C., Pandy, M.G.: Dynamic optimization of human walking. J. Biomech. Eng. 123(5), 381–390 (2001)

    Article  Google Scholar 

  6. van den Bogert, A.J., Su, A.: A weighted least squares method for inverse dynamic analysis. Comput. Methods Biomech. Biomed. Eng. 11(1), 3–9 (2008)

    Article  Google Scholar 

  7. Dopico, D., Luaces, A., González, M., Cuadrado, J.: Dealing with multiple contacts in a human-in-the-loop application. Multibody Syst. Dyn. 25(2), 167–183 (2011)

    Article  MathSciNet  Google Scholar 

  8. Flores, P., Machado, M., Silva, M., Martins, J.: On the continuous contact force models for soft materials in multibody dynamics. Multibody Syst. Dyn. 25(3), 357–375 (2011)

    Article  MATH  Google Scholar 

  9. Gilchrist, L.A., Winter, D.A.: A two-part, viscoelastic foot model for use in gait simulations. J. Biomech. 29(6), 795–798 (1996)

    Article  Google Scholar 

  10. Golyandina, N., Nekrutkin, V., Zhigljavsky, A.: Analysis of Time Series Structure: SSA and Related Techniques. Chapman & Hall/CRC, London, Boca Raton (2001)

    Book  Google Scholar 

  11. Hansen, N.: The CMA evolution strategy: a comparing review. Stud. Fuzziness Soft Comput. 192, 75–102 (2006)

    Article  Google Scholar 

  12. García de Jalón, J., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge. Springer, Berlin (1994)

    Book  Google Scholar 

  13. Kecskeméthy, A.: A novel cylinder-plane foot contact model for human gait motion reproduction. In: Multibody Dynamics 2011, ECCOMAS Thematic Conference, Brussels, Belgium (2011)

    Google Scholar 

  14. Kuo, A.: A least-squares estimation approach to improving the precision of inverse dynamics computations. J. Biomech. Eng. 120(1), 148–159 (1998)

    Article  Google Scholar 

  15. Lankarani, H.M., Nikravesh, P.E.: A contact force model with hysteresis dam** for impact analysis of multibody systems. J. Mech. Des. 112(3), 369–376 (1990)

    Article  Google Scholar 

  16. Lu, T.W., O’Connor, J.J.: Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. J. Biomech. 32(2), 129–134 (1999)

    Article  Google Scholar 

  17. Millard, M., McPhee, J., Kubica, E.: Multibody dynamics: computational methods and applications. In: Multi-Step Forward Dynamic Gait Simulation, pp. 25–43. Springer, Berlin (2008)

    Google Scholar 

  18. Murai, A., Yamane, K., Nakamura, Y.: Modeling and identification of human neuromusculoskeletal network based on biomechanical property of muscle. In: 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS’08, Vancouver, Canada, pp. 3706–3709 (2008)

    Chapter  Google Scholar 

  19. O’Connor, C.M., Thorpe, S.K., O’Malley, M.J., Vaughan, C.L.: Automatic detection of gait events using kinematic data. Gait Posture 25(3), 469–474 (2007)

    Article  Google Scholar 

  20. Reinbolt, J.A., Schutte, J.F., Fregly, B.J., Koh, B.I., Haftka, R.T., George, A.D., Mitchell, K.H.: Determination of patient-specific multi-joint kinematic models through two-level optimization. J. Biomech. 38(3), 621–626 (2005)

    Article  Google Scholar 

  21. Ren, L., Jones, R.K., Howard, D.: Predictive modelling of human walking over a complete gait cycle. J. Biomech. 40(7), 1567–1574 (2007)

    Article  Google Scholar 

  22. Ren, L., Jones, R.K., Howard, D.: Whole body inverse dynamics over a complete gait cycle based only on measured kinematics. J. Biomech. 41(12), 2750–2759 (2008)

    Article  Google Scholar 

  23. Rodrigo, S., Ambrósio, J., Da Silva, M., Penisi, O.: Analysis of human gait based on multibody formulations and optimization tools. Mech. Based Des. Struct. Mach. 36(4), 446–477 (2008)

    Article  Google Scholar 

  24. Silva, M., Ambrósio, J.: Kinematic data consistency in the inverse dynamic analysis of biomechanical systems. Multibody Syst. Dyn. 8(2), 219–239 (2002)

    Article  MATH  Google Scholar 

  25. Umberger, B.R., Gerritsen, K.G., Martin, P.E.: A model of human muscle energy expenditure. Comput. Methods Biomech. Biomed. Eng. 6(2), 99–111 (2003)

    Article  Google Scholar 

  26. Vaughan, C.L., Davis, B.L., O’Connor, J.C.: Dynamics of Human Gait, 2nd edn. Kiboho, Cape Town (1999)

    Google Scholar 

  27. **ang, Y., Chung, H.J., Kim, J.H., Bhatt, R., Rahmatalla, S., Yang, J., Marler, T., Arora, J., Abdel-Malek, K.: Predictive dynamics: an optimization-based novel approach for human motion simulation. Struct. Multidiscip. Optim. 41(3), 465–479 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The support of this work by the Spanish Ministry of Science and Innovation under the project DPI2009–13438–C03, cofinanced by the European Union through EFRD funds, is acknowledged. The help from Álvaro Noriega, from University of Oviedo, Spain, in the selection of the optimization algorithm is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urbano Lugrís.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lugrís, U., Carlín, J., Pàmies-Vilà, R. et al. Solution methods for the double-support indeterminacy in human gait. Multibody Syst Dyn 30, 247–263 (2013). https://doi.org/10.1007/s11044-013-9363-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-013-9363-x

Keywords

Navigation