Log in

Identification of multibody vehicle models for crash analysis using an optimization methodology

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This work proposes an optimization methodology for the identification of realistic multibody vehicle models, based on the plastic hinge approach, for crash analysis. The identification of the design variables and the objective function and constraints are of extreme importance for the success of the optimization. The characteristics of the plastic hinges are used as design variables while the objective functions are formulated with measures of the difference between the dynamic response of the model and a reference response. The sequential application of genetic and gradient-based optimization methods is used to solve the optimization problem constituting a systematic approach to the automatic identification of vehicle multibody models. The methodology is demonstrated with the identification of the multibody model of a large family car for side and front crash. The vehicle model is developed in the MADYMO multibody code which is linked with the optimization algorithms implemented in the Matlab Optimization Toolbox.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sousa, L., Veríssimo, P., Ambrósio, J.: Development of generic road vehicle models for crashworthiness. Multibody Syst. Dyn. 19(1), 135–158 (2008)

    Article  Google Scholar 

  2. Kamal, M.M., Wolf, J.A. (eds.): Modern Automotive Structural Analysis. Van Nostrand-Reinhold, New York (1982)

    Google Scholar 

  3. Nikravesh, P.E., Chung, I.S., Benedict, R.L.: Plastic hinge approach to vehicle crash simulation. Comput. Struct. 16(1–4), 395–400 (1983)

    Article  Google Scholar 

  4. Ambrósio, J., Dias, J.: A road vehicle multibody model for crash simulation based on the plastic hinges approach to structural deformations. Int. J. Crashworthiness 12(1), 77–92 (2007)

    Article  Google Scholar 

  5. Milho, J., Ambrósio, J., Pereira, M.: Design of train crash experimental tests by optimization procedures. Int. J. Crashworthiness 9(5), 483–493 (2004)

    Article  Google Scholar 

  6. Bennett, J.A., Lin, K.H., Nelson, M.F.: The application of optimization techniques to problems of automotive crashworthiness. SAE paper No. 770608, pp. 2255–2262 (1997)

  7. Song, J.O.: An optimization method for crashworthiness design. In: SAE Transactions, SAE Paper No. 860804, pp. 39–46 (1986)

  8. Lust, R.: Structural optimization with crashworthiness constraints. Struct. Optim. 4(2), 85–89 (1992)

    Article  MathSciNet  Google Scholar 

  9. Dias, J.P., Pereira, M.S.: Design for crashworthiness using multibody dynamics. Int. J. Veh. Des. 15(6), 563–577 (1994)

    Google Scholar 

  10. Etman, L.F.P., Adriaens, J.M.T.A., van Slagmaat, M.T.P., Schoofs, A.J.G.: Crash worthiness design optimization using multipoint sequential linear programming. Struct. Optim. 12, 222–228 (1996)

    Article  Google Scholar 

  11. Horstemeyer, M.F., Ren, X.C., Fang, H., Acar, E., Wang, P.T.: A comparative study of design optimization methodologies for side-impact crashworthiness, using injury-based versus energy-based criterion. Int. J. Crashworthiness 14(2), 125–138 (2009)

    Article  Google Scholar 

  12. Jonsen, P., Isaksson, E., Sundin, K.G., Oldenburg, M.: Identification of lumped parameter automotive crash models for bumper system development. Int. J. Crashworthiness 14(6), 533–541 (2009)

    Article  Google Scholar 

  13. Zhao, Y., Rosala, G.F., Campean, I.F., Day, A.J.: A response surface approach to front-car optimization for minimizing pedestrian head injury levels. Int. J. Crashworthiness 15(2), 143–150 (2010)

    Article  Google Scholar 

  14. Aird, T., Rice, J.: Systematic search in high dimensional sets. SIAM J. Numer. Anal. 14, 293–312 (1977)

    Article  MathSciNet  Google Scholar 

  15. Sedlaczek, K., Eberhard, P.: Using augmented Lagrangian particle swarm optimization for constrained problems in engineering. Struct. Multidisciplinary Optim. 32(4), 277–286 (2006)

    Article  Google Scholar 

  16. Carvalho, M., Ambrosio, J.: Identification of optimal multibody vehicle models for crash analysis. J. Theor. Appl. Mech. 48(3) (2010)

  17. McCarthy, M., de Lange, R.: A generic evaluation methodology for advanced safety systems. Int. J. Crashworthiness 13(6), 599–608 (2008)

    Article  Google Scholar 

  18. Tandler, J., Zimmerman, E., Munteau, V., Seipel, B., Koch, T., Willersinn, D., Grinberg, M., Mayer, C., Diez, M.: A new pre-crash system for side impact protection. Int. J. Crashworthiness 13(6), 679–692 (2008)

    Article  Google Scholar 

  19. Carvalho, M.: Development of optimal multibody vehicle models for crash analysis. Ph.D. Dissertation, Technical University of Lisbon, Lisbon (2009)

  20. MADYMO Manuals: version 6.2. TNO MADYMO BV, Delft (2004)

  21. MATLAB Release Notes: The Mathworks, Inc., Natick (2008)

  22. Jones, N.: Material strain rate sensitivity. In: Ambrosio, J. (ed.) Crashworthiness: Energy Management and Occupant Protection, pp. 33–47. Springer, Vienna (2001)

    Google Scholar 

  23. Ambrosio, J.: Rigid multibody systems: the plastic hinge approach. In: Ambrosio, J. (ed.) Crashworthiness: Energy Management and Occupant Protection, pp. 205–237. Springer, Vienna (2001)

    Google Scholar 

  24. Winmer, A.: Einfluss der belastungsgesschwindigkeit auf das festigkeitsund verformungsverhalten am beispiel von kraftfarhzeugen. ATZ 77(10), 281–286 (1977)

    Google Scholar 

  25. European Council for Europe: Regulation 33—uniform provisions concerning the approval of vehicles with regard to the behaviour of the structure of the impacted vehicle in a head-on collision (1995)

  26. European Council for Europe: Regulation 95—uniform provisions concerning the approval of vehicles with regard to the protection of the occupants in the event of a lateral collision (1995)

  27. Puppini, R., Diez, M., Avalle, M., Ciglaric, I., Feist, F.: Generic car (FE) models for categories super minis, small family cars, large family executive cars, MPV and heavy vehicle. Technical Report APROSYS AP-SP7-0029-A (2005)

  28. Mooi, H.G., Nastic, T., Huibers, J.H.A.M.: Modelling and optimization of car-to-car compatibility. In: VDI berichte Nr 1471, Düsseldorf, pp. 239–255 (1999)

  29. Gielen, A.W.J., Mooi, H.G., Huibers, J.H.A.M.: An optimization methodology for improving car-to-car compatibility. ImechE Trans. C567/047/2000 (2000)

  30. van der Zweep, C.D., Kellendonk, G., Lemmen, P.: Evaluation of fleet systems model for vehicle compatibility. Int. J. Crashworthiness 10(5), 483–494 (2005)

    Article  Google Scholar 

  31. Gonçalves, J., Ambrósio, J.: Road vehicle multiple objective optimization for ride and stability. Multibody Syst. Dyn. 13(1), 3–23 (2005)

    Article  MATH  Google Scholar 

  32. Censor, Y.: Pareto optimality in multiobjective problems. Appl. Math. Optim. 4, 41–59 (1977)

    Article  MathSciNet  Google Scholar 

  33. Cunha, N.O., Polak, E.: Constrained minimization under vector valued criteria in finite dimensional spaces. J. Math. Anal. Appl. 19, 103–124 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  34. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley, Chichester (2001)

    MATH  Google Scholar 

  35. Cohon, J.L.: Multicriteria programming: Brief review and application. In: Gero, J.S. (ed.) Design Optimization, pp. 163–191. Academic Press, New York (1985)

    Google Scholar 

  36. Adelman, H.M., Haftka, R.T.: Sensitivity analysis of discrete structural systems. AIAA J. 24, 823–832 (1986)

    Article  Google Scholar 

  37. Greene, W., Haftka, R.: Computational aspects of sensitivity calculations in transient structural analysis. Comput. Struct. 32(2), 433–443 (1989)

    Article  Google Scholar 

  38. Neto, M.A., Ambrósio, J., Leal, R.: Sensitivity analysis of flexible multibody systems using composite materials components. Int. J. Numer. Methods Eng. 77(3), 386–413 (2009)

    Article  MATH  Google Scholar 

  39. Bischof, C., Carle, A., Corliss, G., Griewank, A., Hovland, P.: ADIFOR: generating derivative codes from FORTRAN programs. Sci. Program. 1(1), 11–29 (1992)

    Google Scholar 

  40. Dias, J., Pereira, M.: Sensitivity analysis of rigid-flexible multibody systems. Multibody Syst. Dyn. 1, 303–322 (1997)

    Article  MATH  Google Scholar 

  41. Ambrósio, J., Eberhard, P.: Advanced Design of Mechanical Systems: From Analysis to Optimization. Springer, Vienna (2009)

    Book  Google Scholar 

  42. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  43. Fonseca, C.M., Fleming, P.J.: An overview of evolutionary algorithms in multiobjective optimization. Evol. Comput. 3(1), 1–16 (1995)

    Article  Google Scholar 

  44. Eberhard, P., Dignath, F., Kübler, L.: Parallel evolutionary optimization of multibody systems with application to railway dynamics. Multibody Syst. Dyn. 9(2), 143–164 (2003)

    Article  MATH  Google Scholar 

  45. Fletcher, R., Powell, M.J.D.: A rapidly convergent descent method for minimization. Comput. J. 6, 163–168 (1963)

    MATH  MathSciNet  Google Scholar 

  46. Goldfarb, D.: A family of variable metric updates derived by variational means. Math. Comput. 24, 23–26 (1970)

    MATH  MathSciNet  Google Scholar 

  47. Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic Press, London (1981)

    MATH  Google Scholar 

  48. Han, S.P.: A globally convergent method for nonlinear programming. J. Optim. Theory Appl. 22, 297–309 (1977)

    Article  MATH  Google Scholar 

  49. Powell, M.J.D.: A fast algorithm for nonlinearly constrained optimization calculations. In: Watson, G.A. (ed.) Numerical Analysis. Lecture Notes in Mathematics, vol. 630, pp. 144–175. Springer, Berlin (1978)

    Chapter  Google Scholar 

  50. Powell, M.J.D.: The convergence of variable metric methods for nonlinearly constrained optimization calculations. In: Mangasarian, O.L., Meyer, R.R., Robinson, S.M. (eds.) Nonlinear Programming, vol. 3. Academic Press, New York (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Carvalho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carvalho, M., Ambrósio, J. Identification of multibody vehicle models for crash analysis using an optimization methodology. Multibody Syst Dyn 24, 325–345 (2010). https://doi.org/10.1007/s11044-010-9221-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-010-9221-z

Keywords

Navigation