Log in

Energy dissipation characteristics of polyurea and polyurea/carbon black composites

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

The energy dissipation characteristics of polyurea and polyurea/carbon black composites are determined under cycling loading at different amplitudes and excitation frequencies. These characteristics are measured experimentally and validated against the predictions of finite element models (FEM). Further validation of the energy dissipated is carried out by comparisons with the product of the storage modulus and the loss factor of the polymer as obtained from the measurement of the complex moduli using the Dynamic Mechanical Thermal Analyzer (DMTA). The obtained results indicate an excellent agreement between the experiments and the predictions of the FEM. Furthermore, it is observed that the energy dissipated per unit volume of pristine polyurea is, on average, about 10% higher than that of polyurea/carbon black composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Amini, M.R., Simon, J., Nemat-Nasser, S.: Numerical modeling of effect of polyurea on response of steel plates to impulsive loads in direct pressure-pulse experiments. Mech. Mater. 42, 615–627 (2010a)

    Article  Google Scholar 

  • Amini, M.R., Simon, J., Nemat-Nasser, S.: Investigation of effect of polyurea on response of steel plates to impulsive loads in direct pressure-pulse experiments. Mech. Mater. 42, 628–639 (2010b)

    Article  Google Scholar 

  • Amirkhizi, A.V., Isaacs, J., Mcgee, J., Nemat-Nasser, S.: An experimentally-based viscoelastic constitutive model for polyurea, including pressure and temperature effects. Philos. Mag. 86(36), 5847–5866 (2006)

    Article  Google Scholar 

  • ASTM Standards D638: Standard test method for tensile properties of plastics. ASTM International, West Conshohocken, PA (2014)

  • Bahei-El-Din, Y.A., Dvorak, G.J., Fredricksen, O.J.: A impact tolerant sandwich plate design with a polyurea interlayer. Int. J. Solids Struct. 43, 7644–7658 (2006)

    Article  MATH  Google Scholar 

  • Bodin, C.: Energy storage and dissipation in polyurea composites. Master of Science in Mechanical Engineering Thesis, Massachusetts Institute of Technology (2013)

  • Carbone, G., Persson, B.N.J.: Crack motion in viscoelastic solids: the role of the flash temperature. Eur. Phys. J. E 17, 261–281 (2005)

    Article  Google Scholar 

  • Darab, B.: Dissipation of vibration energy using viscoelastic granular materials. Ph.D. Thesis, University of Sheffield (2013)

  • El-Sabbagh, A., Baz, A.: Topology optimization of unconstrained dam** treatments for plates. Eng. Optim. 46(9), 1153–1168 (2014)

    Article  MathSciNet  Google Scholar 

  • Fuith, A., Reinecker, M., Sánchez-Ferrer, A., Mezzenga, R., Mrzel, A., Knite, M., Aulika, I., Dunce, M., Schranz, W.: Dynamic- and thermo-mechanical analysis of inorganic nanotubes/elastomer composites. Sens. Transducers J. 12, 71–79 (2011)

    Google Scholar 

  • Gardner, N., Wang, E., Kumar, P., Shukla, A.: Blast mitigation in a sandwich composite using graded core and polyurea interlayer. Exp. Mech. 2012(52), 119–133 (2012)

    Article  Google Scholar 

  • Han, S., Chung, D.D.L.: Mechanical energy dissipation using carbon fiber polymer–matrix structural composites with filler incorporation. J. Mater. Sci. 47, 2434–2453 (2012)

    Article  Google Scholar 

  • Huang, W., Yang, Y., Li, H., Lyu, P., Zhang, R.: Characterization and Dam** Property of a Modified Polyurea Material. International Conference on Transportation Infrastructure and Materials (ICTIM 2017) (2017). ISBN 978-1-60595-442-4

    Google Scholar 

  • Iqbal, N., Tripathi, M., Parthasarathy, S., Kumar, D., Roy, P.K.: Polyurea coatings for enhanced blast-mitigation: a review. RSC Adv. 6, 109706–109717 (2016)

    Article  Google Scholar 

  • Kanchwala, M.Z.: Testing and design life modeling of polyurea liners for potable water pipes. Master of Science Thesis, Department of Civil Engineering, the University of Texas at Arlington (2010)

  • Kolenda, J.: Dissipation energy in viscoelastic solids under multiaxial loads. Pol. Marit. Res. 1(15), 19–28 (2008)

    Article  Google Scholar 

  • Lakes, R.S.: Viscoelastic Materials. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  • Li, Y., Xu, M.: Hysteresis loop and energy dissipation of viscoelastic solid models. Mech. Time-Depend. Mater. 11(1), 1–14 (2007)

    Article  MathSciNet  Google Scholar 

  • Mott, P.H., Giller, C.B., Fragiadakis, D., Rosenberg, D.A., Roland, C.M.: Deformation of polyurea: where does the energy go? Polymer 105, 227–233 (2016)

    Article  Google Scholar 

  • Oh, J., Ray, M.C., Baz, A.M.: Engineered dam** treatments. In: Inman, D. (ed.) Smart Structures and Materials 2001: Dam** and Isolation, 4–8 March 2001, Newport Beach, CA. Proceedings of the SPIE, vol. 4331, pp. 43–59 (2001). https://doi.org/10.1117/12.432730

    Chapter  Google Scholar 

  • Ramirez, B.J.: Manufacturing and characterization of temperature-stable, novel, viscoelastic polyurea based foams for impact management. Ph.D. Thesis in Mechanical Engineering, University of California Los Angeles (2017)

  • Shim, J.: Finite strain behavior of polyurea for a wide range of strain rates. Ph.D. Thesis, MIT, Cambridge, Massachusetts (2010)

  • Shim, J., Moh, D.: Punch indentation of polyurea at different loading velocities: experiments and numerical simulations. Mech. Mater. 43(7), 349–360 (2011)

    Article  Google Scholar 

  • Symans, M.D., Charney, F.A., Whittaker, A.S., Constantinou, M.C., Kircher, C.A., Johnson, M.W., McNamara, R.J.: Energy dissipation systems for seismic applications: current practice and recent developments. J. Struct. Eng. 134(1), 3–21 (2008)

    Article  Google Scholar 

  • Tekalur, S.A., Shukla, A., Shivakumar, K.: Blast resistance of polyurea based layered composite materials. Compos. Struct. 84, 271–281 (2008)

    Article  Google Scholar 

  • Vulcan, M.A., Damian, C., Stanescu, P.O., Vasile, E., Petre, R., Hubca, G.: Polymeric composites based on polyurea matrix reinforced with carbon nanotubes. Mater. Plast. 54(1), 41–44 (2017)

    Google Scholar 

  • Wang, M.-J.: The role of filler networking in dynamic properties of filled rubber. In: Conference of the Rubber Division, Indianapolis, Indiana, May 5–8, 1998. Am. Chem. Soc., Washington (1998). Paper No. CRP-213-292

    Google Scholar 

  • Xu, Z.D., Shi, C.F.: Energy dissipation analysis on real application by using viscoelastic dampers. In: The 14th World Conference on Earthquake Engineering, October 12–17, 2008, Bei**g, China (2008)

    Google Scholar 

  • Yurekli, K., Krishnamoorti, R., Tse, M.F., Mcelrath, K.O., Tsou, A.H., Wang, H.-C.: Structure and dynamics of carbon black-filled elastomers. J. Polym. Sci., Part B, Polym. Phys. 39, 256–275 (2001)

    Article  Google Scholar 

  • Zhang, J.-F., Yi, X.-S.: Dynamic rheological behavior of high-density polyethylene filled with carbon black. J. Appl. Polym. Sci. 86, 3527–3531 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This research has been funded by King Abdulaziz City of Science and Technology (KACST) under grant number 819-33.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Baz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akl, W., Nouh, M., Aldraihem, O. et al. Energy dissipation characteristics of polyurea and polyurea/carbon black composites. Mech Time-Depend Mater 23, 223–247 (2019). https://doi.org/10.1007/s11043-018-9397-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-018-9397-9

Keywords

Navigation