Log in

A soft clustering technique with layered feature extraction for social image mining

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Social image mining is beneficial to accomplish tasks like event detection, suspicious activity detection, prediction of future trends, identification of mentally depressed people, etc. To carry out social image mining, data mining techniques need to be used. Clustering is one of the most important tasks of data mining which is able to deal with the unlabelled data. But, less number of clustering approaches are having ability to handle the uncertain image data. Thus, in this paper we proposed a soft clustering algorithm named as ROugh Mean Shift clustering (ROMS) with layered feature extraction model for social images. Effectiveness of the rough set theory and mean shift concepts are incorporated in this algorithm. It makes the ROMS to deal with the vagueness and the automatic determination of cluster numbers in given data. Proposed method is experimented on three datasets- synthetic, standard and real-world datasets and compared with existing techniques. Experimental results show that ROMS performs better as compared to other techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Aggarwal C (2011) An introduction to social network data analytics. Social network data analytics, Springer US

  2. Aiazzi B, Alparone L, Baronti S, Garzelli A, Zoppetti C (2013) Nonparametric change detection in multitemporal SAR images based on mean-shift clustering. IEEE Trans Geosci Remote Sens 51(4):2022–2031

    Article  Google Scholar 

  3. Banerjee S, Kayal D (2016) Detection of hard exudates using mean shift and normalized cut method. Biocybernet Biomed Eng 36(4):679–685

    Article  Google Scholar 

  4. Bean C, Kambhampati C (2008) Autonomous clustering using rough set theory. Int J Autom Comput 5(1):90–102

    Article  Google Scholar 

  5. Chen G, Lerman G (2009) Foundations of a multi-way spectral clustering framework for hybrid linear modeling. Found Comput Math 9:517–558

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen H-p, Shen X-J, Long J-W (2016) Histogram-based colour image fuzzy clustering algorithm. Multimed Tools Appl 75(18):11417–11432

    Article  Google Scholar 

  7. Chen B, Yang Z, Huang S, Du X, Cui Z, Bhimani J, **e X, Mi N (2017) Cyber-physical system enabled nearby traffic flow modelling for autonomous vehicles. In proceedings of the IEEE 36th International Conference on Performance Computing and Communications (IPCCC) 1–6

  8. Cheng Y (1995) Mean shift, mode seeking, and clustering. IEEE Trans Pattern Anal Mach Intell 17(8):790–799

    Article  Google Scholar 

  9. Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24(5):603–619

    Article  Google Scholar 

  10. Comaniciu D, Ramesh V, Meer P (2000) Real-time tracking of non-rigid objects using mean shift. In proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 142–149

  11. Ding M, Fan G (2015) Multilayer joint gait-pose manifolds for human gait motion modeling. IEEE Trans Cybernet 45(11):2413–2424

    Article  Google Scholar 

  12. Ding M, Fan G (2016) Articulated and generalized gaussian kernel correlation for human pose estimation. IEEE Trans Image Process 25(2):776–789

    Article  MathSciNet  MATH  Google Scholar 

  13. Duggan M, Ellison NB, Lampe C, Lenhart A, Madden M (2015) Frequency of social media use. Pew Research Center's Internet & American Life Project

  14. Facebook Profiles (2016) <https://www.facebook.com/>; (accessed 16.23.09)

  15. Fazayeli F, Wang L, Mandziuk J (2008) Feature selection based on the rough set theory and expectation-maximization clustering algorithm. In proceedings of the International Conference on Rough Sets and Current Trends in Computing. 272–282

  16. Feng W, Yang Y, Wan L, Yu C (2016) Tone-mapped mean-shift based environment map sampling. IEEE Trans Vis Comput Graph 22(9):2187–2199

    Article  Google Scholar 

  17. Fukunaga K, Hostetler L (1975) The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans Inf Theory 21(1):32–40

    Article  MathSciNet  MATH  Google Scholar 

  18. Gao Y, Wang M, Tao D, Ji R, Dai Q (2012) 3-D object retrieval and recognition with hypergraph analysis. IEEE Trans Image Process 21(9):4290–4303

    Article  MathSciNet  MATH  Google Scholar 

  19. Gonzalez R, Woods R (2006) Digital image processing, 3rd edn. Prentice-Hall, Inc, Upper Saddle River

    Google Scholar 

  20. Guellil I, Boukhalfa K (2015) Social big data mining: a survey focused on opinion mining and sentiments analysis. In proceedings of the 12th IEEE International Symposium on Programming and Systems (ISPS); 1–10

  21. Han J, Pei J, Kamber M (2011) Data mining: concepts and techniques. 3rd Edition, Morgan Kaufmann publishers

  22. Huiskes M, Lew M (2008) The MIR Flickr retrieval evaluation. In: Proceedings of the ACM international conference on multimedia information retrieval. Vancouver, Canada

    Google Scholar 

  23. Jain A (2010) Data clustering: 50 years beyond K-means. Pattern Recogn Lett 31(8):651–666

    Article  Google Scholar 

  24. Jiang S, Qian X, Mei T, Fu Y (2016) Personalized travel sequence recommendation on multi-source big social media. IEEE Trans Big Data 2(1):43–56

    Article  Google Scholar 

  25. Kaneko T, Yanai K (2016) Event photo mining from twitter using keyword bursts and image clustering. Neurocomputing:143–158

  26. Keck MA Jr, Davis JW, Tyagi A (2006) Tracking mean shift clustered point clouds for 3d surveillance. In proceedings of the 4th ACM International Workshop on Video Surveillance and Sensor Networks. 187–194

  27. Li M, Bao Z, Song L, Duh H (2016) Social-aware visualized exploration of tourist behaviours. In proceedings of the IEEE International Conference on Big Data and Smart Computing (BigComp). 289–292

  28. Lin K-Y, Hsi-Peng L (2011) Why people use social networking sites: an empirical study integrating network externalities and motivation theory. Comput Hum Behav 27(3):1152–1161

    Article  Google Scholar 

  29. Lingras P (2002) Rough set clustering for web mining. In proceedings of the IEEE International Conference on Fuzzy Systems. 1039–1044

  30. Lingras P (2007) Applications of rough set based k-means, Kohonen SOM, GA clustering. Transactions on rough sets, springer Berlin Heidelberg. 7: 120–139

  31. Lingras P, Peters G (2012) Applying rough set concepts to clustering. Rough Sets: Selected Methods and Applications in Management and Engineering, Springer London. 23–37

  32. Lingras P, West C (2004) Interval set clustering of web users with rough k-means. J Intel Inform Syst, Springer 23(1):5–16

    Article  MATH  Google Scholar 

  33. Liu Y, Li SZ, Wu W, Huang R (2013) Dynamics of a mean-shift-like algorithm and its applications on clustering. Inf Process Lett 113(1):8–16

    Article  MathSciNet  MATH  Google Scholar 

  34. Liu C, Zhang X, Li X, Li R, Zhang X, Chao W (2016) Multi-modal learning for social image classification. In proceedings of the 12th IEEE International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). 1174–1179

  35. Maji P, Pal S (2007) Rough set based generalized fuzzy-means algorithm and quantitative indices. IEEE Trans Syst, Man, Cybernet, Part B (Cybernetics) 37(6):1529–1540

    Article  Google Scholar 

  36. Maji P, Roy S (2015) Rough-fuzzy clustering and multiresolution image analysis for text-graphics segmentation. Appl Soft Comput 30:705–721

    Article  Google Scholar 

  37. Manh NQ, Tuan ND, Sang DV, Binh HTT, Thuy NT (2015) Uniform detection in social image streams. In proceedings of the 7th IEEE International Conference on Knowledge and Systems Engineering (KSE). 180–185

  38. Marin D, Tang M, Ayed IB, Boykov YY (2017) Kernel clustering: density biases and solutions. IEEE Transactions on Pattern Analysis and Machine Intelligence

  39. Pacheco F, Cerrada M, Sánchez R-V, Cabrera D, Li C, de Oliveira JV (2017) Attribute clustering using rough set theory for feature selection in fault severity classification of rotating machinery. Expert Syst Appl 71:69–86

    Article  Google Scholar 

  40. Pal S, Mitra P (2002) Multispectral image segmentation using the rough-set-initialized EM algorithm. IEEE Trans Geosci Remote Sens 40(11):2495–2501

    Article  Google Scholar 

  41. Parmar D, Wu T, Blackhurst J (2007) MMR: an algorithm for clustering categorical data using rough set theory. Data Knowl Eng 63(3):879–893

    Article  Google Scholar 

  42. Parzen E (1962) On estimation of a probability density function and mode. Ann Math Stat 33(3):1065–1076

    Article  MathSciNet  MATH  Google Scholar 

  43. Pawlak Z (1997) Rough set approach to knowledge-based decision support. Eur J Oper Res 99(1):48–57

    Article  MATH  Google Scholar 

  44. Pawlak Z (2002) Rough set theory and its applications. J Telecomm Inform Technol:7–10

  45. Pawlak Z (2012) Rough sets: theoretical aspects of reasoning about data. Springer Science & Business Media

  46. Perer A, Shneiderman B (2006) Balancing systematic and flexible exploration of social networks. IEEE Trans Vis Comput Graph 12(5):693–700

    Article  Google Scholar 

  47. Peters G, Crespo F, Lingras P, Weber R (2013) Soft clustering–fuzzy and rough approaches and their extensions and derivatives. Int J Approx Reason 54(2):307–322

    Article  MathSciNet  Google Scholar 

  48. Sarkar JP, Saha I, Maulik U (2016) Rough possibilistic type-2 fuzzy c-means clustering for MR brain image segmentation. Appl Soft Comput 46:527–536

    Article  Google Scholar 

  49. Seema Wazarkar BN (2018) Keshavamurthy, and Ahsan Hussain.: probabilistic classifier for fashion image grou** using multi-layer feature extraction model. Int J Web Serv Res 15(2):89–104

    Article  Google Scholar 

  50. Smarandache F (2005) A unifying field in logics: neutrsophic logic. neutrosophy, neutrosophic set, neutrosophic probability: neutrsophic logic. neutrosophy, neutrosophic set, neutrosophic probability. Infinite Study

  51. Steinhaus H (1956) Sur la division des corp materiels en parties. Bull Acad Polon Sci 1(804):801

    MathSciNet  MATH  Google Scholar 

  52. Theodoridis S, Koutroumbas K (2008) Pattern recognition. 4th Edition, Academic Press Elsevier

  53. Unal Y, Polat K, Kocer E (2016) Classification of vertebral column disorders and lumbar discs disease using attribute weighting algorithm with mean shift clustering. Measurement 77:278–291

    Article  Google Scholar 

  54. Unal Y, Polat K, Erdinc Kocer H Classification of vertebral column disorders and lumbar discs disease using attribute weighting algorithm with mean shift clustering. Measurement 216 77:278–291

  55. Viola P, Michael J (2004) Jones.: robust real-time face detection. Int J Comput Vis 57(2):137–154

    Article  Google Scholar 

  56. Wang F, Qi S, Gao G, Zhao S, Wang X (2016) Logo information recognition in large-scale social media data. Multimedia Systems 22(1):63–73

    Article  Google Scholar 

  57. Wazarkar S, Bettahally N (2018) Keshavamurthy.: Feature Extraction Model for Social Images. In proceedings of the Springer’s Conference on Smart Computing and Informatics 669–677

  58. Wazarkar S, Bettahally N (2018) Keshavamurthy.: fashion image classification using matching points with linear convolution. Multimed Tools Appl:1–18

  59. **ao S, Tan M, Xu D, Dong ZY (2016) Robust kernel low-rank representation. IEEE Trans Neural Netw Learn Syst 27(11):2268–2281

    Article  MathSciNet  Google Scholar 

  60. **e X, Liu S, Yang C, Yang Z, Xu J, Zhai X (2017) The application of smart materials in tactile actuators for tactile information delivery. ar**v preprint ar**v:1708.07077

  61. Yu B, Niu Z, Wang L (2013) Mean shift based clustering of neutrosophic domain for unsupervised constructions detection. Optik-Int J Light Elect Opt 124(21):4697–4706

    Article  Google Scholar 

  62. Zafarani R, Abbasi MA, Liu H (2014) Social media mining: an introduction. Cambridge University Press

  63. Zhao S, Yao H, Zhang Y, Wang Y, Liu S (2015) View-based 3D object retrieval via multi-modal graph learning. Signal Process 112:110–118

    Article  Google Scholar 

  64. Zhao S, Yao H, Zhao S, Jiang X, Jiang X (2016) Multi-modal microblog classification via multi-task learning. Multimed Tools Appl 75(15):8921–8938

    Article  Google Scholar 

  65. Zhao S, Yao H, Gao Y, Ji R, **e W, Jiang X, Chua T-S (2016) Predicting personalized emotion perceptions of social images. In proceedings of the ACM Conference on Multimedia. 1385–1394

  66. Zhao S, Gao Y, Ding G, Chua T-S (2017) Real-Time Multimedia Social Event Detection in Microblog. IEEE Transactions on Cybernetics

  67. Zhao S, Yao H, Gao Y, Ji R, Ding G (2017) Continuous probability distribution prediction of image emotions via multitask shared sparse regression. IEEE Trans Multimed 19(3):632–645

    Article  Google Scholar 

  68. Zhu W, Lu J, Zhou J (2018) Nonlinear subspace clustering for image clustering. Pattern Recogn Lett 107:131–136

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seema Wazarkar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wazarkar, S., Keshavamurthy, B.N. A soft clustering technique with layered feature extraction for social image mining. Multimed Tools Appl 78, 20333–20360 (2019). https://doi.org/10.1007/s11042-018-6881-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6881-9

Keywords

Navigation