Log in

Quality trait improvement in horticultural crops: OMICS and modern biotechnological approaches

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Horticultural crops are an essential part of food and nutritional security. Moreover, these form an integral part of the agricultural economy and have enormous economic potential. They are a rich source of nutrients that are beneficial to human health. Plant breeding of horticultural crops has focussed primarily on increasing the productivity and related traits of these crops. However, fruit and vegetable quality is paramount to their perishability, marketability, and consumer acceptance. The improved nutritional value is beneficial to underprivileged and undernourished communities. Due to a declining genetic base, conventional plant breeding does not contribute much to quality improvement as the existing natural allelic variations and crossing barriers between cultivated and wild species limit it. Over the past two decades, ‘omics’ and modern biotechnological approaches have made it possible to decode the complex genomes of crop plants, assign functions to the otherwise many unknown genes, and develop genome-wide DNA markers. Genetic engineering has enabled the validation of these genes and the introduction of crucial agronomic traits influencing various quality parameters directly or indirectly. This review discusses the significant advances in the quality improvement of horticultural crops, including shelf life, aroma, browning, nutritional value, colour, and many other related traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Chen H-S et al (2020) Consumer attitudes and purchase intentions toward food delivery platform services. Sustainability 12(23):10177

    Article  Google Scholar 

  2. Sadilek T (2019) Perception of food quality by consumers: literature review

  3. Daniels N (2007) Just health: meeting health needs fairly. Cambridge University Press

  4. Wilson DW et al (2017) The role of food antioxidants, benefits of functional foods, and influence of feeding habits on the health of the older person: an overview. Antioxidants 6(4):81

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ravichandra N (2014) Horticulture and its role in the national economies, in Horticultural Nematology. Springer, pp 1–3

  6. Sagar NA et al (2018) Fruit and vegetable waste: bioactive compounds, their extraction, and possible utilization. Compr Rev Food Sci Food Saf 17(3):512–531

    Article  CAS  PubMed  Google Scholar 

  7. Silva Dias J, Ryder E (2010) The impact of plant breeding on the world vegetable industry. in XXVIII International Horticultural Congress on Science and Horticulture for People (IHC2010): International Symposium on New 935.

  8. Husaini AM et al (2011) Approaches for gene targeting and targeted gene expression in plants. GM Crops 2(3):150–162

    Article  PubMed  Google Scholar 

  9. Husaini AM et al (2010) Vehicles and ways for efficient nuclear transformation in plants. GM Crops 1(5):276–287

    Article  PubMed  Google Scholar 

  10. Husaini A, Xu Y (2016) Agrobacterium-mediated genetic transformation of strawberry, in Strawberry: Growth, Development and Diseases, H.A.a.N. D, Editor. CABI: UK. p. 71–98

  11. Husaini AM, Tuteja N (2013) Biotech crops: imperative for achieving the Millenium Development Goals and sustainability of agriculture in the climate change era, vol 4. GM crops & food, pp 1–9. 1

  12. Husaini AM, Sohail M (2018) Time to redefine organic agriculture: can’t GM crops be certified as organics? Front Plant Sci 9:423

    Article  PubMed  PubMed Central  Google Scholar 

  13. Husaini AM, Rafiqi AM (2012) Role of osmotin in strawberry improvement. Plant Mol Biology Report 30(5):1055–1064

    Article  CAS  Google Scholar 

  14. Husaini AM, Jiménez AJL (2022) Understanding saffron biology using omics-and bioinformatics tools: step** towards a better Crocus phenome. Mol Biol Rep, : p. 1–16

  15. Kramer MG, Redenbaugh K (1994) Commercialization of a tomato with an antisense polygalacturonase gene: the FLAVR SAVR™ tomato story. Euphytica 79(3):293–297

    Article  Google Scholar 

  16. Gonsalves D (2006) Transgenic papaya: development, release, impact and challenges. Adv Virus Res 67:317–354

    Article  CAS  PubMed  Google Scholar 

  17. Tripathi S, Suzuki J, Gonsalves D (2007) Development of genetically Engineered resistant papaya for papaya ringspot virus in a Timely Manner. Plant-Pathogen interactions. Springer, pp 197–240

  18. Ryder E (2011) World vegetable industry: production, breeding, trends. Hortic Rev 38:299

    Google Scholar 

  19. Pradeepkiran JA (2019) Aquaculture role in global food security with nutritional value: a review. Translational Anim Sci 3(2):903–910

    Article  CAS  Google Scholar 

  20. Kumar S et al (2019) Crop biofortification for iron (Fe), zinc (zn) and vitamin A with transgenic approaches. Heliyon 5(6):e01914

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dias JS, Ortiz R (2021) New strategies and approaches for improving Vegetable Cultivars, in the basics of human civilization. CRC Press, pp 349–381

  22. Tien Lea D, Duc Chua H, Quynh N, Lea (2016) Improving nutritional quality of plant proteins through genetic engineering. Curr Genom 17(3):220–229

    Article  Google Scholar 

  23. Dutt S et al (2020) Potato proteins, in Potato. Springer, pp 51–71

  24. Dutt S et al (2019) Biotechnology for nutritional and associated processing quality improvement in potato, in nutritional quality improvement in plants. Springer, pp 429–483

  25. Uncu AO, Doganlar S, Frary A (2013) Biotechnology for enhanced nutritional quality in plants. CRC Crit Rev Plant Sci 32(5):321–343

    Article  CAS  Google Scholar 

  26. Kim SH et al (2013) Downregulation of the lycopene ϵ-cyclase gene increases carotenoid synthesis via the β‐branch‐specific pathway and enhances salt‐stress tolerance in sweetpotato transgenic calli. Physiol Plant 147(4):432–442

    Article  CAS  PubMed  Google Scholar 

  27. Park SC et al (2015) Overexpression of the IbMYB1 gene in an orange-fleshed sweet potato cultivar produces a dual‐pigmented transgenic sweet potato with improved antioxidant activity. Physiol Plant 153(4):525–537

    Article  CAS  PubMed  Google Scholar 

  28. Wang H et al (2019) CRISPR/Cas9-based mutagenesis of starch biosynthetic genes in sweet potato (Ipomoea Batatas) for the improvement of starch quality. Int J Mol Sci 20(19):4702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vickers CE et al (2009) A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat Chem Biol 5(5):283–291

    Article  CAS  PubMed  Google Scholar 

  30. Fraser PD et al (1994) Carotenoid biosynthesis during tomato fruit development (evidence for tissue-specific gene expression). Plant Physiol 105(1):405–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Enfissi EM et al (2005) Metabolic engineering of the mevalonate and non-mevalonate isopentenyl diphosphate‐forming pathways for the production of health‐promoting isoprenoids in tomato. Plant Biotechnol J 3(1):17–27

    Article  CAS  PubMed  Google Scholar 

  32. Slimestad R, Verheul M (2009) Review of flavonoids and other phenolics from fruits of different tomato (Lycopersicon esculentum Mill.) Cultivars. J Sci Food Agric 89(8):1255–1270

    Article  CAS  Google Scholar 

  33. Muir SR et al (2001) Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nat Biotechnol 19(5):470–474

    Article  CAS  PubMed  Google Scholar 

  34. Zuluaga DL et al (2008) Arabidopsis thaliana MYB75/PAP1 transcription factor induces anthocyanin production in transgenic tomato plants. Funct Plant Biol 35(7):606–618

    Article  CAS  PubMed  Google Scholar 

  35. Mehta RA et al (2002) Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life. Nat Biotechnol 20(6):613–618

    Article  CAS  PubMed  Google Scholar 

  36. Maligeppagol M et al (2013) Anthocyanin enrichment of tomato (Solanum lycopersicum L.) fruit by metabolic engineering. Curr Sci, : p. 72–80

  37. Jian W et al (2019) SlMYB75, an MYB-type transcription factor, promotes anthocyanin accumulation and enhances volatile aroma production in tomato fruits. Hortic Res, 6

  38. **ong A-S et al (2005) Different effects on ACC oxidase gene silencing triggered by RNA interference in transgenic tomato. Plant Cell Rep 23(9):639–646

    Article  CAS  PubMed  Google Scholar 

  39. Gupta A, Pal RK, Rajam MV (2013) Delayed ripening and improved fruit processing quality in tomato by RNAi-mediated silencing of three homologs of 1-aminopropane-1-carboxylate synthase gene. J Plant Physiol 170(11):987–995

    Article  CAS  PubMed  Google Scholar 

  40. Deng L et al (2018) Efficient generation of pink-fruited tomatoes using CRISPR/Cas9 system. J Genet genomics = Yi chuan xue bao 45(1):51–54

    Article  CAS  PubMed  Google Scholar 

  41. Xu Z-S et al (2019) Changing carrot color: insertions in DcMYB7 alter the regulation of anthocyanin biosynthesis and modification. Plant Physiol 181(1):195–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Alam I, Salimullah M (2021) Genetic engineering of eggplant (Solanum melongena L.): Progress, controversy and potential. Horticulturae 7(4):78

    Article  Google Scholar 

  43. Zhang Y et al (2016) Genetically engineered anthocyanin pathway for high health-promoting pigment production in eggplant. Mol Breeding 36(5):1–14

    Article  Google Scholar 

  44. Parvathy V et al (2014) DNA barcoding to detect chilli adulteration in traded black pepper powder. Food Biotechnol 28(1):25–40

    Article  CAS  Google Scholar 

  45. Galaffu N, Bortlik K, Michel M (2015) An industry perspective on natural food colour stability, in Colour additives for foods and beverages. Elsevier, pp 91–130

  46. Lin-Wang K et al (2010) An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biol 10(1):1–17

    Article  Google Scholar 

  47. Zhang S et al (2020) A novel NAC transcription factor, MdNAC42, regulates anthocyanin accumulation in red-fleshed apple by interacting with MdMYB10. Tree Physiol 40(3):413–423

    Article  PubMed  Google Scholar 

  48. Carter N (2012) Petition for determination of nonregulated status: Arctic™ Apple (Malus x domestica) events GD743 and GS784. United States Department of Agriculture—Animal and Plant Health Inspection Service

  49. Stowe E, Dhingra A (2021) Development of the Arctic® apple. Plant Breed Reviews 44:273–296

    Article  Google Scholar 

  50. Gilissen LJ et al (2005) Silencing the major apple allergen Mal d 1 by using the RNA interference approach. J allergy Clin Immunol 115(2):364–369

    Article  CAS  PubMed  Google Scholar 

  51. Smolka A et al (2010) Effects of transgenic rootstocks on growth and development of non-transgenic scion cultivars in apple. Transgenic Res 19(6):933–948

    Article  CAS  PubMed  Google Scholar 

  52. Johnston JW et al (2009) Co-ordination of early and late ripening events in apples is regulated through differential sensitivities to ethylene. J Exp Bot 60(9):2689–2699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Atkinson RG et al (2012) Down-regulation of POLYGALACTURONASE1 alters firmness, tensile strength and water loss in apple (Malus x domestica) fruit. BMC Plant Biol 12(1):1–13

    Article  Google Scholar 

  54. Mathiazhagan M et al (2021) Genomic approaches for improvement of tropical fruits: fruit quality, shelf life and nutrient content. Genes 12(12):1881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kumar GBS, Srinivas L, Ganapathi TR (2011) Iron fortification of banana by the expression of soybean ferritin. Biol Trace Elem Res 142(2):232–241

    Article  CAS  PubMed  Google Scholar 

  56. Paul JY et al (2017) Golden bananas in the field: elevated fruit pro-vitamin A from the expression of a single banana transgene. Plant Biotechnol J 15(4):520–532

    Article  CAS  PubMed  Google Scholar 

  57. Vishnevetsky J et al (2011) Improved tolerance toward fungal diseases in transgenic Cavendish banana (Musa spp. AAA group) cv. Grand Nain. Transgenic Res 20(1):61–72

    Article  CAS  PubMed  Google Scholar 

  58. Elitzur T et al (2016) Banana MaMADS transcription factors are necessary for fruit ripening and molecular tools to promote shelf-life and food security. Plant Physiol 171(1):380–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Blas AL et al (2010) Cloning of the papaya chromoplast-specific lycopene β-cyclase, CpCYC-b, controlling fruit flesh color reveals conserved microsynteny and a recombination hot spot. Plant Physiol 152(4):2013–2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Castillo XO et al (2011) Phylogeography and molecular epidemiology of papaya ringspot virus. Virus Res 159(2):132–140

    Article  Google Scholar 

  61. Gonsalves CV, Gonsalves D (2014) The Hawaii papaya story, in Handbook on agriculture, biotechnology and development. Edward Elgar Publishing

  62. Jia R et al (2017) Use of RNAi technology to develop a PRSV-resistant transgenic papaya. Sci Rep 7(1):1–9

    Google Scholar 

  63. Cabanos CS et al (2013) Compositional analysis of transgenic papaya with delayed ripening trait. Philipp Agric Sci 96:331–339

    Google Scholar 

  64. Bai C et al (2016) Bottlenecks in carotenoid biosynthesis and accumulation in rice endosperm are influenced by the precursor–product balance. Plant Biotechnol J 14(1):195–205

    Article  CAS  PubMed  Google Scholar 

  65. Kim M et al (2010) Transformation of carotenoid biosynthetic genes using a micro-cross section method in kiwifruit (Actinidia deliciosa cv. Hayward). Plant Cell Rep 29(12):1339–1349

    Article  CAS  PubMed  Google Scholar 

  66. Fagoaga C et al (2007) Engineering of gibberellin levels in citrus by sense and antisense overexpression of a GA 20-oxidase gene modifies plant architecture. J Exp Bot 58(6):1407–1420

    Article  CAS  PubMed  Google Scholar 

  67. Dubouzet JG, Strabala TJ, Wagner A (2013) Potential transgenic routes to increase tree biomass. Plant Sci 212:72–101

    Article  CAS  PubMed  Google Scholar 

  68. Pons E et al (2014) Metabolic engineering of β-carotene in orange fruit increases its in vivo antioxidant properties. Plant Biotechnol J 12(1):17–27

    Article  CAS  PubMed  Google Scholar 

  69. Youssef SM et al (2013) Effect of simultaneous down-regulation of pectate lyase and endo-β-1, 4-glucanase genes on strawberry fruit softening. Mol Breeding 31(2):313–322

    Article  CAS  Google Scholar 

  70. Sun J-H et al (2013) New evidence for the role of ethylene in strawberry fruit ripening. J Plant Growth Regul 32(3):461–470

    Article  CAS  Google Scholar 

  71. Quiroz-Iturra L, Rosas-Saavedra C, Klein CS (2017) Functional Fruits Through Metabolic Engineering, in Superfood and Functional Food-The Development of Superfoods and Their Roles as Medicine. IntechOpen

  72. Nookaraju A et al (2010) Molecular approaches for enhancing sweetness in fruits and vegetables. Sci Hort 127(1):1–15

    Article  CAS  Google Scholar 

  73. Lin-Wang K et al (2014) Engineering the anthocyanin regulatory complex of strawberry (Fragaria vesca). Front Plant Sci 5:651

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zhai R et al (2019) The MYB transcription factor PbMYB12b positively regulates flavonol biosynthesis in pear fruit. BMC Plant Biol 19(1):1–11

    Article  Google Scholar 

  75. Freiman A et al (2012) Development of a transgenic early flowering pear (Pyrus communis L.) genotype by RNAi silencing of PcTFL1-1 and PcTFL1-2. Planta 235(6):1239–1251

    Article  CAS  PubMed  Google Scholar 

  76. Zhang L, Zhang LL, Kang LN (2022) Promoter cloning of PuLOX2S gene from “Nanguo” pears and screening of transcription factors by Y1H technique. J Food Biochem, : p. e14278

  77. Young TR, Firoozabady E (2010) Transgenic pineapple plants with modified carotenoid levels and methods of their production. Google Patents

  78. Kim H et al (2015) Targeted genome editing for crop improvement. Plant Breed Biotechnol 3(4):283–290

    Article  Google Scholar 

  79. Husaini AM (2021) Organic GMOs: Combining Ancient Wisdom with Modern Biotechnology, in Agricultural Biotechnology: Latest Research and Trends, D. Kumar Srivastava, A. Kumar Thakur, and P. Kumar, Editors. Springer Singapore: Singapore. p. 323–328

  80. Husaini AM, Sohail M (2023) Robotics-assisted, organic agricultural-biotechnology based environment-friendly healthy food option: beyond the binary of GM versus Organic crops. J Biotechnol 361:41–48

    Article  CAS  PubMed  Google Scholar 

  81. Malhotra S (2017) Horticultural crops and climate change: a review. Indian J Agric Sci 87(1):12–22

    Google Scholar 

  82. Kamthan A et al (2016) Genetically modified (GM) crops: milestones and new advances in crop improvement. Theor Appl Genet 129(9):1639–1655

    Article  CAS  PubMed  Google Scholar 

  83. Husaini AM (2022) High-value pleiotropic genes for develo** multiple stress-tolerant biofortified crops for 21st-century challenges. Heredity,

  84. Ahmad N et al (2020) A critical look on CRISPR-based genome editing in plants. J Cell Physiol 235(2):666–682

    Article  CAS  PubMed  Google Scholar 

  85. Karkute SG et al (2017) CRISPR/Cas9 mediated genome engineering for improvement of horticultural crops. Front Plant Sci 8:1635

    Article  PubMed  PubMed Central  Google Scholar 

  86. Schindele A, Dorn A, Puchta H (2020) CRISPR/Cas brings plant biology and breeding into the fast lane. Curr Opin Biotechnol 61:7–14

    Article  CAS  PubMed  Google Scholar 

  87. Husaini AM, Abdin MZ (2008) Development of transgenic strawberry (Fragaria x ananassa Duch.) Plants tolerant to salt stress. Plant Sci 174(4):446–455

    Article  CAS  Google Scholar 

  88. Husaini AM, Abdin MZ (2008) Overexpression of tobacco osmotin gene leads to salt stress tolerance in strawberry (Fragaria× ananassa Duch.) Plants. Indian J Biotechnol 7:465–471

    CAS  Google Scholar 

  89. Husaini AM et al (2012) Modifying strawberry for better adaptability to adverse impact of climate change. Curr Sci, : p. 1660–1673

  90. Hu C et al (2021) CRISPR/Cas9-mediated genome editing of MaACO1 (aminocyclopropane‐1‐carboxylate oxidase 1) promotes the shelf life of banana fruit. Plant Biotechnol J 19(4):654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Li X et al (2018) Lycopene is enriched in tomato fruit by CRISPR/Cas9-mediated multiplex genome editing. Front Plant Sci 9:559

    Article  PubMed  PubMed Central  Google Scholar 

  92. Odipio J et al (2017) Efficient CRISPR/Cas9 genome editing of phytoene desaturase in cassava. Front Plant Sci 8:1780

    Article  PubMed  PubMed Central  Google Scholar 

  93. Ren C et al (2016) CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L). Sci Rep 6(1):1–9

    Article  CAS  Google Scholar 

  94. Yu Q-h et al (2017) CRISPR/Cas9-induced targeted mutagenesis and gene replacement to generate long-shelf life tomato lines. Sci Rep 7(1):1–9

    Google Scholar 

  95. Husaini A, Xu Y (2016) Challenges of climate change to strawberry cultivation: uncertainty and beyond, in Strawberry: Growth, Development and Diseases, H.A.a.N. D, Editor. CABI: UK. p. 262–287

  96. Yang L et al (2017) Silencing of sl PL, which encodes a pectate lyase in tomato, confers enhanced fruit firmness, prolonged shelf-life and reduced susceptibility to grey mould. Plant Biotechnol J 15(12):1544–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nonaka S et al (2017) Efficient increase of ɣ-aminobutyric acid (GABA) content in tomato fruits by targeted mutagenesis. Sci Rep 7(1):1–14

    Article  CAS  Google Scholar 

  98. Ubayasena L et al (2011) Genetic control and identification of QTLs associated with visual quality traits of field pea (Pisum sativum L). Genome 54(4):261–272

    Article  PubMed  Google Scholar 

  99. Ma Y et al (2017) Genome-wide SNP identification, linkage map construction and QTL map** for seed mineral concentrations and contents in pea (Pisum sativum L). BMC Plant Biol 17(1):1–17

    Article  Google Scholar 

  100. Berry M et al (2020) QTL analysis of cooking time and quality traits in dry bean (Phaseolus vulgaris L). Theor Appl Genet 133(7):2291–2305

    Article  CAS  PubMed  Google Scholar 

  101. Bassett A et al (2021) QTL map** of seed quality traits including cooking time, flavor, and texture in a yellow dry bean (Phaseolus vulgaris L.) population. Front Plant Sci 12:670284

    Article  PubMed  PubMed Central  Google Scholar 

  102. Liu C et al (2021) Identification of Major Loci and Candidate Genes for Anthocyanin Biosynthesis in Broccoli Using QTL-Seq Horticulturae. 7(8):246

  103. Flachowsky H et al (2007) Overexpression of BpMADS4 from silver birch (Betula pendula Roth.) Induces early-flowering in apple (Malus× domestica Borkh). Plant Breeding 126(2):137–145

    Article  CAS  Google Scholar 

  104. Ganapathi T et al (2021) Transgenic Banana: current Status, Opportunities and Challenges. Genetically Modified Crops, : p. 111–128

  105. Petri C et al (2008) High transformation efficiency in plum (Prunus domestica L.): a new tool for functional genomics studies in Prunus spp. Mol Breeding 22(4):581–591

    Article  CAS  Google Scholar 

  106. Mercado JA et al (2010) Evaluation of the role of the endo-β-(1, 4)-glucanase gene FaEG3 in strawberry fruit softening. Postharvest Biol Technol 55(1):8–14

    Article  CAS  Google Scholar 

  107. López-Gómez R et al (2009) Ripening in papaya fruit is altered by ACC oxidase cosuppression. Transgenic Res 18(1):89–97

    Article  PubMed  Google Scholar 

  108. Alvarez D et al (2021) Fruit crops in the era of genome editing: closing the regulatory gap. Plant Cell Rep 40(6):915–930

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are highly grateful to the SKUAST-K for the support and facilities.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

AMH conceptualized, analysed and edited the manuscript. TB, SAH and SM wrote the paper together with critical inputs from MI and AMH. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Amjad M. Husaini.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Not applicable.

Competing interests

The authors have no conflict of interest and nothing to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashir, T., Ul Haq, S.A., Masoom, S. et al. Quality trait improvement in horticultural crops: OMICS and modern biotechnological approaches. Mol Biol Rep 50, 8729–8742 (2023). https://doi.org/10.1007/s11033-023-08728-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08728-3

Keywords

Navigation