Log in

Plant growth promoting Pseudomonas aeruginosa from Valeriana wallichii displays antagonistic potential against three phytopathogenic fungi

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The soil nature and characterstics are directly related to the micro-organisms present, bio-mineralization process, plant type and thus having harmonius and interdependent relationships. Soil bacteria having antagonistic activity against phytopathogens, play an important role in root growth, overall plant growth and also their composition depends upon the plant species. Population explosion across globe has resulted in indiscriminate use of chemical fertilizers, fungicides and pesticides, thus posing serious risk to plant productivity and soil flora. Plant growth promoting rhizobacteria (PGPRs) are considered safer than chemical fertilizers as they are eco-friendly and sustain longer after colonization in rhizospheric soil. PGPRs are preferred as a green choice and acts as a superior biocontrol agents against phytopathogens. In the present study, a potential rhizobacteria, Pseudomonas aeruginosa (isolate-2) was isolated from the rhizosphere of a medicinal plant, Valeriana wallichi. The bacterial isolate exhibited qualitative tests for plant growth promoting determinatives. It was also subjected to in-vitro biocontrol activity against potential phytopathogens viz. Alternaria alternata, Aspergillus flavus and F. oxysporum. The antagonistic efficacy against F. oxysporum was 56.2% followed by Alternaria alternata to be 51.02%. The maximum inhibition of radial growth of F. oxysporum was 69.2%, Alternaria alternata (46.4%) and Aspergillus flavus (15%). The Pseudomonas aeruginosa exhibited plant growth promotion rhizobacterial activity which can be expoited as biofertilizers. This study deals with microbial revitalization strategy and offers promising solution as a biocontrol agent to enhance crop yield. Further, PGPRs research using the interdisciplinary approaches like biotechnology, nanotechnology etc. will unravel the molecular mechanisms which may be helpful for maximizing its potential in sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mommer L, Hinsinger P, Prigent-Combaret C et al (2016) Advances in the rhizosphere: stretching the interface of life. Plant Soil 407:1–8

    CAS  Google Scholar 

  2. Jaiswal SK, Mohammed M, Dakora FD (2019) Microbial community structure in the rhizosphere of the orphan legume Kersting’s groundnut [Macrotyloma geocarpum (Harms) Marechal & Baudet]. Mol Biol Rep 46:4471

    CAS  PubMed  Google Scholar 

  3. Chernin L, Chet I (2002) Microbial enzymes in biocontrol of plant pathogens and pests. Enzymes in the Environment:Activity, Ecology, and Applications (Burns R & Dick R, eds), pp. 171–225. Marcel Dekker, Inc., New York.

  4. Whipps J (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    CAS  PubMed  Google Scholar 

  5. Whipps JM (1997) Ecological considerations involved in commercial development of biological control agents for soilborne diseases. In: van Elsas JD, Trevors JT, Wellington EMH (eds) Modern Soil Microbiology. Marcel Dekker, New York, pp 525–546

    Google Scholar 

  6. Fravel DR (1988) Role of antibiosis in the biocontrol of plant diseases. Annu Rev Phytopathol 26:75–91

    CAS  Google Scholar 

  7. Berg G, Opelt K, Zachow C, Lottmann J, Götz M, Costa R, Smalla K (2006) The rhizosphere effect on bacteria antagonistic towards the pathogenic fungus Verticillium differs depending on plant species and site. FEMS Microbiol Ecol 56:250–261

    CAS  PubMed  Google Scholar 

  8. Berg G (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    CAS  PubMed  Google Scholar 

  9. Glick BR (1995) The enhancement of plant growth by free- living bacteria. Can J Microbiol 41(2):109–117. https://doi.org/10.1139/m95-015

    Article  CAS  Google Scholar 

  10. Klich MA (2007) Aspergillus flavus: the major producer of aflatoxin. Mol Plant Pathol 8(6):713–722

    CAS  PubMed  Google Scholar 

  11. Bajwa R, Mukhtar I, Mushtaq S (2010) New report of Alternaria alternata causing leaf spot of Aloe vera in Pakistan. Can J Plant Path 32:490–492

    Google Scholar 

  12. Ito K, Tanaka T, Hatta R, Yammamoto M, Akimutsu K, Tsuge T (2004) Dissection of the host range of the fungal plant pathogen Alternaria alternata by modification of secondary metabolism. Mol Microbiol 52(2):399–411

    CAS  PubMed  Google Scholar 

  13. Garbeva P, Van Veen JA, Van Elsas JD (2004) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243–270

    CAS  PubMed  Google Scholar 

  14. Bitas V et al (2013) Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health. Mol Plant Microbe Interact 26:835–843

    CAS  PubMed  Google Scholar 

  15. Audrain B, Farag MA, Ryu C, Ghigo J (2015) Role of bacterial volatile compounds in bacterial biology. FEMS Microbiol Rev 39(222):233

    Google Scholar 

  16. **ao AW, Li WC, Ye ZH (2020) The effect of plant growth-promoting rhizobacteria (PGPR) on arsenic accumulation and the growth of rice plants (Oryza sativa L.). Chemosphere 242:125–136

    Google Scholar 

  17. Vaishnav A, Choudhary DK (2019) Regulation of drought-responsive gene expression in Glycine max L. Merrill is mediated through pseudomonas simiae strain AU. J Plant Growth Regul 38:333–342. https://doi.org/10.1007/s00344-018-9846-3

    Article  CAS  Google Scholar 

  18. Liu X, Jiang X, He X et al (2019) Phosphate-Solubilizing Pseudomonas sp. Strain P34-L promotes wheat growth by colonizing the wheat rhizosphere and improving the wheat root system and soil phosphorus nutritional status. J Plant Growth Regul 38:1314–1324. https://doi.org/10.1007/s00344-019-09935-8

    Article  CAS  Google Scholar 

  19. Cassán F, Vanderleyden J, Spaepen S (2014) Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (pgpr) belonging to the genus azospirillum. J Plant Growth Regul 33:440–459

    Google Scholar 

  20. Rasouli-Sadaghiani MH, Barin M, Khodaverdiloo H et al (2019) Arbuscular mycorrhizal fungi and rhizobacteria promote growth of russian knapweed (Acroptilon repens L.) in a Cd-contaminated soil. J Plant Growth Regul 38:113–121

    CAS  Google Scholar 

  21. Parray JA, Kamili AN, Reshi ZA, Qadri RA, Jan S (2015) Interaction of rhizobacterial strains for growth improvement of Crocus sativus L. under tissue culture conditions. Plant Cell Tiss Organ Cult 121:325–334

    CAS  Google Scholar 

  22. Larraburu EE, Yarte ME, Llorente BE (2016) Azospirillum brasilense inoculation, auxin induction and culture medium composition modify the profile of antioxidant enzymes during in vitro rhizogenesis of pink lapacho. Plant Cell Tiss Organ Cult 127:381–392

    CAS  Google Scholar 

  23. Jimtha JC, Smitha PV, Anisha C et al (2014) Isolation of endophytic bacteria from embryogenic suspension culture of banana and assessment of their plant growth promoting properties. Plant Cell Tiss Organ Cult 118:57–66. https://doi.org/10.1007/s11240-014-0461-0

    Article  Google Scholar 

  24. Kargapolova KY, Burygin GL, Tkachenko OV et al (2020) Effectiveness of inoculation of in vitro-grown potato microplants with rhizosphere bacteria of the genus Azospirillum. Plant Cell Tiss Organ Cult 141:351–359. https://doi.org/10.1007/s11240-020-01791-9

    Article  CAS  Google Scholar 

  25. Thomas J, Ajay D, Raj Kumar R et al (2010) Influence of beneficial microorganisms during in vivo acclimatization of in vitro-derived tea (Camellia sinensis) plants. Plant Cell Tiss Organ Cult 101:365–370. https://doi.org/10.1007/s11240-010-9687-7

    Article  Google Scholar 

  26. Padmavathi T, Dikshit R, Seshagiri S (2015) Effect of rhizophagus spp. and plant growth-promoting acinetobacter junii on solanum lycopersicum and capsicum annuum. Braz. J. Bot 38:273–280

    Google Scholar 

  27. Mohammadi H, Dashi R, Farzaneh M et al (2017) Effects of beneficial root pseudomonas on morphological, physiological, and phytochemical characteristics of Satureja hortensis (Lamiaceae) under water stress. Braz J Bot 40:41–48

    Google Scholar 

  28. Alen’kina SA, Romanov NI, Nikitina VE (2018) Regulation by Azospirillum lectins of the activity of antioxidant enzymes in wheat seedling roots under short-term stresses. Braz J Bot 41:579–587. https://doi.org/10.1007/s40415-018-0489-1

    Article  Google Scholar 

  29. Gururani MA, Upadhyaya CP, Baskar V et al (2013) Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in solanum tuberosum through inducing changes in the expression of ros-scavenging enzymes and improved photosynthetic performance. J Plant Growth Regul 32:245–258. https://doi.org/10.1007/s00344-012-9292-6

    Article  CAS  Google Scholar 

  30. Shukla PS, Agarwal PK, Jha B (2012) Improved salinity Tolerance of Arachis hypogaea (L.) by the interaction of halotolerant plant-growth-promoting rhizobacteria. J Plant Growth Regul 31:195–206. https://doi.org/10.1007/s00344-011-9231-y

    Article  CAS  Google Scholar 

  31. Kumari S, Vaishnav A, Jain S et al (2015) Bacterial-mediated induction of systemic tolerance to salinity with expression of stress alleviating enzymes in soybean (Glycine max L. Merrill). J Plant Growth Regul 34:558–573. https://doi.org/10.1007/s00344-015-9490-0

    Article  CAS  Google Scholar 

  32. Guo JK, Muhammad H, Lv X, Wei T, Ren XH, Jia HL, Atif S, Hua L (2020) Prospects and applications of plant growth promoting rhizobacteria to mitigate soil metal contamination: a review. Chemosphere 246:12583

    Google Scholar 

  33. Hou J, Liu W, Wang B, Wang Q, Luo Y, Franks AE (2015) PGPR enhanced phytoremediation of petroleum contaminated soil and rhizosphere microbial community response. Chemosphere 138:592–598

    CAS  PubMed  Google Scholar 

  34. Liu W, Hou J, Wang Q, Ding L, Luo Y (2014) Isolation and characterization of plant growth-promoting rhizobacteria and their effects on phytoremediation of petroleum-contaminated saline-alkali soil. Chemosphere 117:303–308

    CAS  PubMed  Google Scholar 

  35. Ju WL, Liu L, ** XL, Duan CJ, Cui YX, Wang J, Ma DK, Zhao W, Wang YQ, Fang LC (2020) Co-inoculation effect of plant-growth-promoting rhizobacteria and rhizobium on EDDS assisted phytoremediation of Cu contaminated soils. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.126724

    Article  PubMed  Google Scholar 

  36. Khanna K, Jamwal VL, Kohli SK, Gandhi SG, Ohri P, Bhardwaj R, Abd Allah EF, Hashem A, Ahmad P (2019) Plant growth promoting rhizobacteria induced Cd tolerance in Lycopersicon esculentum through altered antioxidative defense expression. Chemosphere 217:463–474

    CAS  PubMed  Google Scholar 

  37. Khanna K, Jamwal VL, Sharma A, Gandhi SG, Ohri P, Bhardwaj R, Al-Huqail AA, Siddiqui MH, Ali HM, Ahmad P (2019) Supplementation with plant growth promoting rhizobacteria (PGPR) alleviates cadmium toxicity in Solanum lycopersicum by modulating the expression of secondary metabolites. Chemosphere 230:628–639

    CAS  PubMed  Google Scholar 

  38. Guarino F, Mir A, Castiglione S, Cicatelli A (2020) Arsenic phytovolatilization and epigenetic modifications in Arundo donax L. assisted by a PGPR consortium. Chemosphere 251:126310

    CAS  PubMed  Google Scholar 

  39. Mitra S, Purkait T, Pramanik K, Maiti TK, Dey RS (2019) Three-dimensional graphene for electrochemical detection of cadmium in klebsiella michiganensis to study the influence of cadmium uptake in rice plant. Mater Sci Eng C Mater Biol Appl 103:109802

    CAS  PubMed  Google Scholar 

  40. Tien TM, Gaskins MH, Hubbell DH (1979) Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L). Appl Environ Microbiol 37:1016–1024

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Prasad R, Chandra H, Sinha BK, Srivastava J (2015) Antagonistic effect of Pseudomonas fluorescens isolated from soil of doon valley (Dehradun–India) on certain phyto-pathogenic fungi. Octa J Biosci 3(2):92–95

    CAS  Google Scholar 

  42. Skimdore AM, Dikinson CH (1976) Colony interaction and hyphal interference between Septoria nodorum and phylloplane fungi. Trans British Mycol Soc 66:57–74

    Google Scholar 

  43. Chandra H, Srivastava J, Agarwal RK. (2016) Fundamental Techniques in Microbiology. Ist Edition. John Publisher Pvt. Ltd, New Delhi

  44. Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (eds) (1994) Bergey’s Manual of Determinative Bacteriology, 9th edn. Williams & Wilkin, Baltimore, Md

    Google Scholar 

  45. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564–577

    CAS  PubMed  Google Scholar 

  47. Anisimova M, Gascuel O (2006) Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 55:539–552

    PubMed  Google Scholar 

  48. Chevenet F, Brun C, Banuls AL, Jacq B, Christen R (2006) TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinformatics 7:439

    PubMed  PubMed Central  Google Scholar 

  49. Ghosh S, Debnath S, Hazra S, Hartung A, Thomale K, Schultheis M, Kapkova P, Schurigt U, Moll H, Holzgrabe U, Hazra B (2011) Valeriana wallichii root extracts and fractions with activity against Leishmania spp. Parasit Res 108:861–871

    Google Scholar 

  50. Glaser J, Schultheis M, Moll H, Hazra HU (2015) Antileishmanial and cytotoxic compounds from Valeriana wallichii and identification of a novel nepetolactone derivative. Molecules 20:5740–5753. https://doi.org/10.3390/molecules20045740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sah SP, Mathela C, Chopra K (2010) Valeriana wallichii: a phyto-pharmacological review. J Pharm Res 3:2337–2339

    CAS  Google Scholar 

  52. Qi X, Wang E, **ng M, Zhao W, Chen X (2012) Rhizosphere and non-rhizosphere bacterial community composition of the wild medicinal plant Rumex patientia. World J Microbiol Biotech 28:2257–2265

    Google Scholar 

  53. Deketelaere S, Tyvaert L, França SC, Höfte M (2017) Desirable traits of a good biocontrol agent against verticillium wilt. Front Microbiol 8:1186. https://doi.org/10.3389/fmicb.2017.01186

    Article  PubMed  PubMed Central  Google Scholar 

  54. Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153

    CAS  PubMed  Google Scholar 

  55. Raaijmakers JM, Paulitz TC, Steinberg C et al (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:41–361

    Google Scholar 

  56. Yasmin S, Hafeez FY, Rasul G (2014) Evaluation of Pseudomonas aeruginosa Z5 for biocontrol of cotton seedling disease caused by Fusarium oxysporum. Biocontrol Sci Tech 24:1227–1242

    Google Scholar 

  57. Sasirekha B, Srividya S (2016) Siderophore production by Pseudomonas aeruginosa FP6, a biocontrol strain for Rhizoctonia solani and Colletotrichum gloeosporioides causing diseases in chilli. Agric Nat Resour 50:250–256

    CAS  Google Scholar 

  58. Lakshmi V, Kumaria S, Singh A, Prabha C (2015) Isolation and characterization of deleterious Pseudomonas aeruginosa KC1 from rhizospheric soils and its interaction with weed seedlings. J King Saud Univ Sci 27:113–119

    Google Scholar 

  59. Conrath U, Beckers GJM, Langenbach CJG, Jaskiewicz MR (2015) Priming for enhanced defense. Annu Rev Phytopathol 53:97–119. https://doi.org/10.1146/annurev-phyto-080614-120132

    Article  CAS  PubMed  Google Scholar 

  60. Spadaro D, Droby S (2016) Development of biocontrol products for postharvest diseases of fruit: the importance of elucidating the mechanisms of action of yeast antagonists. Trends Food Sci Technol 47:39–49

    CAS  Google Scholar 

  61. Ghorbanpour M, Omidvari M, Abbaszadeh-Dahaji P, Omidvar R, Kariman K (2018) Mechanisms underlying the protective effects of beneficial fungi against plant diseases. Biol Control 117:147–157

    Google Scholar 

  62. Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol Res 159:371–394

    CAS  PubMed  Google Scholar 

  63. Pal KK, Tilak KVBR, Saxena AK, Dey R, Singh CS (2001) Suppression of maize root diseases caused by Macrophomina phaseolina, Fusarium moniliforme and Fusarium graminearum by plant growth promoting rhizobacteria. Microbiol Res 156:209–223

    CAS  PubMed  Google Scholar 

  64. Sayyed RZ, Patel PR (2011) Biocontrol potential of siderophore producing heavy metal resistant Alcaligenes sp. and Acinetobacter sp. vis-à-vis organophosphorus fungicide. Indian J Microbiol 51(3):266–272

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    CAS  PubMed  Google Scholar 

  66. Rasmann S et al (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737

    CAS  PubMed  Google Scholar 

  67. Holt RD, Hochberg ME (1997) When is biological control evolutionarily stable (or is it)? Ecology 78:1673–1683

    Google Scholar 

  68. Pierson LS, Pierson EA (2010) Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes. Appl Microbiol Biotechnol 86:1659–1670

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Arora NK, Kang SC, Maheshwari DK (2001) Isolation of siderophore-producing strains of R.meliloti and their biocontrol potential against M. phaseolina that causes charcoal rot of groundnut. Curr Sci 81:673–677

    Google Scholar 

  70. Adesemoye AO, Torbert HA, Kloepper JW (2009) Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58:921–992

    CAS  PubMed  Google Scholar 

  71. Bardin M, Ajouz S, Comby M, Lopez-Ferber M, Graillot B, Siegwart M, Nicot PC (2015) Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides? Front Plant Sci 6:566. https://doi.org/10.3389/fpls.2015.00566

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kafaei R, Arfaeinia H, Savari A, Mahmoodi M, Rezaei M, Rayani M, Sorial GA, Fattahi N, Ramavandi B (2020) Organochlorine pesticides contamination in agricultural soils of southern Iran. Chemosphere 240:124983

    CAS  PubMed  Google Scholar 

  73. Kwakye MO, Hogarh JN, Van den Brink PJ (2020) Environmental risk assessment of pesticides currently applied in Ghana. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.126845

    Article  Google Scholar 

  74. Mottes C, Lesueur-Jannoyer M, Le Bail M, Guéné M, Carles C, Malézieux E (2017) Relationships between past and present pesticide applications and pollution at a watershed outlet: the case of a horticultural catchment in Martinique, French West Indies. Chemosphere 184:762–773

    CAS  PubMed  Google Scholar 

  75. Xu L, Granger C, Dong H, Mao Y, Duan S, Li J, Qiang Z (2020) Occurrences of 29 pesticides in the Huangpu River, China: Highest ecological risk identified in Shanghai metropolitan area. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.126411

    Article  PubMed  PubMed Central  Google Scholar 

  76. Heimpel GE, Mills N (2017) Biological Control - Ecology and Applications. Cambridge University Press, Cambridge

    Google Scholar 

  77. Van Lenteren JC, Bolckmans K, Köhl J, Ravensberg WJ, Urbaneja A (2018) Biological control using invertebrates and microorganisms: plenty of new opportunities. Biocontrol 63:39–59. https://doi.org/10.1007/s10526-017-9801-4

    Article  Google Scholar 

  78. Chandler D, Bailey AS, Tatchell GM, Davidson G, Greaves J, Grant WP (2011) The development, regulation and use of biopesticides for integrated pest management. Philos Trans R Soc B 366:1987–1998

    Google Scholar 

  79. Parray JA, Jan S, Kamili AN et al (2016) Current perspectives on plant growth-promoting rhizobacteria. J Plant Growth Regul 35:877–902. https://doi.org/10.1007/s00344-016-9583-4

    Article  CAS  Google Scholar 

  80. Zhan Y, Xu Q, Yang MM, Yang HT, Liu HX, Wang YP et al. (2011) Screening of freeze-dried protective agents for the formulation of biocontrol strains, Bacillus cereus AR156, Burkholderia vietnamiensis B418 and Pantoea agglomerans 2Re40 Lett Appl Microbiol 54:10–17

  81. Jiang C-H, Wu F, Yu Z-Y et al (2015) Study on screening and antagonistic mechanisms of Bacillus amyloliquefaciens 54 against bacterial fruit blotch (BFB) caused by Acidovorax avenae subsp. citrulli. Microbiol Res 170:95–104

    PubMed  Google Scholar 

  82. Nakkeeran S, Fernando WGD, Siddiqui ZA (2005) Plant Growth Promoting Rhizobacteria Formulations and its Scope in Commercialization for the Management of Pests and Diseases. In: Siddiqui Z.A. (eds) PGPR: Biocontrol and Biofertilization. Springer, Dordrecht

  83. Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    CAS  PubMed  Google Scholar 

  84. Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, Subramanian S, Smith DL (2018) Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci 9:1473

    PubMed  PubMed Central  Google Scholar 

  85. Parnell JJ, Berka R, Young HA, Sturino JM, Kang Y, Barnhart DM et al (2016) From the lab to the farm: an industrial perspective of plant beneficial microorganisms. Front Plant Sci 7:1110. https://doi.org/10.3389/fpls.2016.01110

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurabh Yadav.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Human and animal rights statement

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2020_5676_MOESM1_ESM.jpg

Fig. S1 Phylogeny tree of amplified sequences of 16S rRNA gene of bacterial Isolate-2 with other Pseudomonas aeruginosa retrieved from NCBI GenBank (JPG 1060 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandra, H., Kumari, P., Bisht, R. et al. Plant growth promoting Pseudomonas aeruginosa from Valeriana wallichii displays antagonistic potential against three phytopathogenic fungi. Mol Biol Rep 47, 6015–6026 (2020). https://doi.org/10.1007/s11033-020-05676-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05676-0

Keywords

Navigation