Log in

The protective effect of rosmarinic acid on hyperthermia-induced C2C12 muscle cells damage

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

High temperature will cause animal tissues or cells damage. Rosmarinic acid (RA) is a good antioxidant and health care product, but the roles of RA in muscle cells damage and the mechanisms which caused by high temperature is still unknown. In this study, the roles of RA on hyperthermia-induced apoptosis and damage of C2C12 muscle cells were investigated. C2C12 cells were cultured in medium with different concentration (0, 25, 50, 100 µM) RA and treated in 42 °C high temperature to induce cellular apoptosis and damage. Then, these cells were analyzed effect of different dose of RA on cells apoptosis and damage. The results indicated that RA has protective effect on heat-stress induced cellular damage, and the cells have the higher cell viability at the dose of 50 µM RA by MTT assay. Hochest33342/PI double staining showed that the cellular apoptosis of C2C12 cells were decreased in the presence of selected 50 µM RA. Malondialdehyde formation and reactive oxygen species levels were also decreased significantly, but cellular superoxide dismutase activity was increased significantly in the presence of RA even in the condition of 42 °C. Meanwhile, Caspase-3 mRNA expression, Caspase-3 activity, and Bax/Bcl-2 ratio were reduced significantly, but the mRNA expression of Hsp72 was increased significantly in those hyperthermia-induced C2C12 cells in the presence of 50 µM RA. Taken together, the results at least discovered that RA has protective effects on hyperthermia-induced cellular apoptosis and damage of muscle cells by change the expression of stress-genes and increasing intracellular antioxidant capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bernabucci U, Biffani S, Buggiotti L, Vitali A, Lacetera N, Nardone A (2014) The effects of heat stress in Italian Holstein dairy cattle. J Dairy Sci 97:471–486

    Article  CAS  PubMed  Google Scholar 

  2. Northcutt J, Foegeding E, Edens F (1994) Water-holding properties of thermally preconditioned chicken breast and leg meat. Poult Sci 73:308–316

    Article  CAS  PubMed  Google Scholar 

  3. West J, Mullinix B, Bernard J (2003) Effects of hot, humid weather on milk temperature, dry matter intake, and milk yield of lactating dairy cows. J Dairy Sci 86:232–242

    Article  CAS  PubMed  Google Scholar 

  4. Grant IR, Hitchings EI, McCartney A, Ferguson F, Rowe MT (2002) Effect of commercial-scale high-temperature, short-time pasteurization on the viability of mycobacterium paratuberculosis in naturally infected cows’ milk. Appl Environ Microbiol 68:602–607

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. West J (2003) Effects of heat-stress on production in dairy cattle. J Dairy Sci 86:2131–2144

    Article  CAS  PubMed  Google Scholar 

  6. Collier R, Collier J, Rhoads R, Baumgard L (2008) Invited review: genes involved in the bovine heat stress response. J Dairy Sci 91:445–454

    Article  CAS  PubMed  Google Scholar 

  7. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Walsh K, Perlman H (1997) Cell cycle exit upon myogenic differentiation. Curr Opin Genet Dev 7:597–602

    Article  CAS  PubMed  Google Scholar 

  9. Wang J, Walsh K (1996) Resistance to apoptosis conferred by Cdk inhibitors during myocyte differentiation. Science 273:359–361

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Arai M, Sasaki A, Saito N, Nakazato Y (2005) Immunohistochemical analysis of cleaved caspase-3 detects high level of apoptosis frequently in diffuse large B-cell lymphomas of the central nervous system. Pathol Int 55:122–129

    Article  CAS  PubMed  Google Scholar 

  11. Dominov JA, Houlihan-Kawamoto CA, Swap CJ, Miller JB (2001) Pro-and anti-apoptotic members of the Bcl-2 family in skeletal muscle: a distinct role for Bcl-2 in later stages of myogenesis. Dev Dyn 220:18–26

    Article  CAS  PubMed  Google Scholar 

  12. Brunelle JK, Letai A (2009) Control of mitochondrial apoptosis by the Bcl-2 family. J Cell Sci 122:437–441

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Reed JC (1997) Double identity for proteins of the Bcl-2 family. Nature 387:773–776

    Article  CAS  PubMed  Google Scholar 

  14. Furtado MA, de Almeida LCF, Furtado RA, Cunha WR, Tavares DC (2008) Antimutagenicity of rosmarinic acid in Swiss mice evaluated by the micronucleus assay. Mutat Res 657:150–154

    Article  CAS  PubMed  Google Scholar 

  15. Pereira P, Tysca D, Oliveira P, da Silva Brum LF, Picada JN, Ardenghi P (2005) Neurobehavioral and genotoxic aspects of rosmarinic acid. Pharmacol Res 52:199–203

    Article  CAS  PubMed  Google Scholar 

  16. Sánchez-Campillo M, Gabaldon J, Castillo J, Benavente-García O, Del Bano M, Alcaraz M, Vicente V, Alvarez N, Lozano J (2009) Rosmarinic acid, a photo-protective agent against UV and other ionizing radiations. Food Chem Toxicol 47:386–392

    Article  PubMed  Google Scholar 

  17. Georges B, Galland S, Rigault C, Borgne FL, Demarquoy J (2003) Beneficial effects of l-carnitine in myoblastic C2C12 cells: Interaction with zidovudine. Biochem Pharmacol 65:1483–1488

    Article  CAS  PubMed  Google Scholar 

  18. Wang H, Zheng Y, Wang G, Li H (2013) Identification of microRNA and bioinformatics target gene analysis in beef cattle intramuscular fat and subcutaneous fat. Mol BioSyst 9:2154–2162

    Article  CAS  PubMed  Google Scholar 

  19. Sonna LA, Fujita J, Gaffin SL, Lilly CM (2002) Invited review: effects of heat and cold stress on mammalian gene expression. J Appl Physiol 92:1725–1742

    Article  CAS  PubMed  Google Scholar 

  20. Hildebrandt B, Wust P, Ahlers O, Dieing A, Sreenivasa G, Kerner T, Felix R, Riess H (2002) The cellular and molecular basis of hyperthermia. Crit Rev Oncol 43:33–56

    Article  Google Scholar 

  21. Porter AG, Jänicke RU (1999) Emerging roles of caspase-3 in apoptosis. Cell Death Differ 6:99

    Article  CAS  PubMed  Google Scholar 

  22. Gao W, Bentley RC, Madden JF, Clavien PA (1998) Apoptosis of sinusoidal endothelial cells is a critical mechanism of preservation injury in rat liver transplantation. Hepatology 27:1652–1660

    Article  CAS  PubMed  Google Scholar 

  23. Sun F, Hamagawa E, Tsutsui C, Ono Y, Ogiri Y, Kojo S (2001) Evaluation of oxidative stress during apoptosis and necrosis caused by carbon tetrachloride in rat liver. Biochimica et Biophysica Acta 1535:186–191

    Article  CAS  PubMed  Google Scholar 

  24. Roberts CK, Sindhu KK (2009) Oxidative stress and metabolic syndrome. Life Sci 84:705–712

    Article  CAS  PubMed  Google Scholar 

  25. Doyotte A, Cossu C, Jacquin M-C, Babut M, Vasseur P (1997) Antioxidant enzymes, glutathione and lipid peroxidation as relevant biomarkers of experimental or field exposure in the gills and the digestive gland of the freshwater bivalve Unio tumidus. Aquat Toxicol 39:93–110

    Article  CAS  Google Scholar 

  26. Aydin A, Arsova-Sarafinovska Z, Sayal A, Eken A, Erdem O, Erten K, Özgök Y, Dimovski A (2006) Oxidative stress and antioxidant status in non-metastatic prostate cancer and benign prostatic hyperplasia. Clin Biochem 39:176–179

    Article  CAS  PubMed  Google Scholar 

  27. Ha H-L, Shin H-J, Feitelson MA, Yu D-Y (2010) Oxidative stress and antioxidants in hepatic pathogenesis. World J Gastroenterol 16:6035

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Limón-Pacheco J, Gonsebatt ME (2009) The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress. Mutat Res 674:137–147

    Article  PubMed  Google Scholar 

  29. Nürnberger S, Miller I, Duvigneau JC, Kavanagh ET, Gupta S, Hartl RT, Hori O, Gesslbauer B, Samali A, Kungl A (2012) Impairment of endoplasmic reticulum in liver as an early consequence of the systemic inflammatory response in rats. Am J Physiol 303:G1373–G1383

    Google Scholar 

  30. Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12:913–922

    Article  CAS  PubMed  Google Scholar 

  31. Hightower LE (1991) Heat shock, stress proteins, chaperones, and proteotoxicity. Cell 66:191–197

    Article  CAS  PubMed  Google Scholar 

  32. Minowada G, Welch WJ (1995) Clinical implications of the stress response. J Clin Investig 95:3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities (No. KYZ201413), National “Twelfth Five-Year” Plan for Science & Technology Support (2012BAD28B01), The Natural Science Foundation of Jiangsu Province (No. SBK201241530), Jiangsu postdoctoral research grants program (1302002B).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui-**a Li or Guang-Hong Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, KL., Li, HX., Xu, XL. et al. The protective effect of rosmarinic acid on hyperthermia-induced C2C12 muscle cells damage. Mol Biol Rep 41, 5525–5531 (2014). https://doi.org/10.1007/s11033-014-3429-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3429-6

Keywords

Navigation