Log in

The over-expression of Chrysanthemum crassum CcSOS1 improves the salinity tolerance of chrysanthemum

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Soil salinity represents a major constraint on plant growth. Here, we report that the over-expression of the Chrysanthemum crassum plasma membrane Na+/H+ antiporter gene CcSOS1, driven by the CaMV 35S promoter, improved the salinity tolerance of chrysanthemum ‘**ba’. In salinity-stressed transgenic plants, both the proportion of the leaf area suffering damage and the electrical conductivity of the leaf were lower in the transgenic lines than in salinity-stressed wild type plants. After a 6 day exposure to 200 mM NaCl, the leaf content of both chlorophyll (a+b) and proline was higher in the transgenic than in the wild type plants. The activity of both superoxide dismutase and peroxidase was higher in the transgenic than in the wild type plants throughout the period of NaCl stress. The transgenic plants had a stronger control over the ingress of Na+ into the plant, particularly with respect to the youngest leaves, and so maintained a more favorable K+/Na+ ratio. The result suggests that a possible strategy for improving the salinity tolerance of chrysanthemum could target the restriction of Na+ accumulation. This study is the first to report the transgenic expression of a Na+ efflux carrier in chrysanthemum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

  2. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  PubMed  Google Scholar 

  3. Shi H, Quintero FJ, Pardo JM, Zhu J-K (2002) The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 14:465–477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Ballesteros E, Blumwald E, Donaire JP, Belver A (1997) Na+/H+ antiport activity in tonoplast vesicles isolated from sunflower roots induced by NaCl stress. Physiol Plant 99:328–334

    Article  CAS  Google Scholar 

  5. Zhu J-K, Shi J, Singh U, Wyatt SE, Bressan RA, Hasegawa PM, Carpita NC (1993) Enrichment of vitronectin- and fibronectin-like proteins in NaCl-adapted plant cells and evidence for their involvement in plasma membrane–cell wall adhesion. Plant J 3:637–646

    Article  CAS  PubMed  Google Scholar 

  6. Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA 97:6896–6901

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Yang Q, Chen ZZ, Zhou XF, Yin HB, Li X, **n XF, Hong XH, Zhu JK, Gong Z (2009) Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis. Mol Plant 2:22–31

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Yue Y, Zhang M, Zhang J, Duan L, Li Z (2012) SOS1 gene overexpression increased salt tolerance in transgenic tobacco by maintaining a higher K+/Na+ ratio. J Plant Physiol 169:255–261

    Article  CAS  PubMed  Google Scholar 

  9. Zhang HX, Hodson JN, Williams JP, Blumwald E (2001) Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci USA 98:12832–12836

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Martinez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu JK, Pardo JM, Quintero FJ (2007) Conservation of the salt overly sensitive pathway in rice. Plant Physiol 143:1001–1012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Anderson N (2006) Chrysanthemum. In: Anderson N (ed) Flower breeding and genetics. Springer, Netherlands, pp 389–437

    Chapter  Google Scholar 

  12. Guan ZY, Chen SM, Wang YY, Chen FD (2010) Screening of salt-tolerance concentration and comparison of salt-tolerance for chrysanthemum and its related taxa. Chinese J Ecol 29:467–472

    Google Scholar 

  13. Hong B, Tong Z, Ma N, Li J, Kasuga M, Yamaguchi-Shinozaki K, Gao J (2006) Heterologous expression of the AtDREB1A gene in chrysanthemum increases drought and salt stress tolerance. Sci China C Life Sci 49:436–445

    Article  CAS  PubMed  Google Scholar 

  14. Chen L, Chen Y, Jiang J, Chen S, Chen F, Guan Z, Fang W (2012) The constitutive expression of Chrysanthemum dichrum ICE1 in Chrysanthemum grandiflorum improves the level of low temperature, salinity and drought tolerance. Plant Cell Rep 31(9):1747–1758

    Article  CAS  PubMed  Google Scholar 

  15. Song A, Lu J, Jiang J, Chen S, Guan Z, Fang W, Chen F (2012) Isolation and characterisation of Chrysanthemum crassum SOS1, encoding a putative plasma membrane Na+/H+ antiporter. Plant Biol (Stuttg) 14:706–713

    Article  CAS  Google Scholar 

  16. Cui XL, Chen FD, Chen SM (2009) Establishment of regeneration and transformation system of ground cover chrysanthemum ‘Yuhuaxunzhang’. J Nan**g Agri Uni 32:40–46

    CAS  Google Scholar 

  17. Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Circ Univ of Calif Agric Exp Station 347:32

  18. Gao X, Ren Z, Zhao Y, Zhang H (2003) Overexpression of SOD2 increases salt tolerance of Arabidopsis. Plant Physiol 133:1873–1881

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta Vulgaris. Plant Physiol 24:1–15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Xu Y, Chen FD (2008) The LT50 and cold tolerance adaptability of chrysanthemum during a natural drop in temperature. Acta Hort Sinica 35:559–564

    Google Scholar 

  21. Liu F, Liu Q, Liang X, Huang H, Zhang S (2005) Morphological, anatomical, and physiological assessment of ramie [Boehmeria Nivea (L.) Gaud.] tolerance to soil drought. Genet Resour Crop Evol 52:497–506

    Article  Google Scholar 

  22. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  23. Pan Y, Wu L, Yu Z (2006) Effect of salt and drought stress on antioxidant enzymes activities and SOD isoenzymes of liquorice (Glycyrrhiza uralensis Fisch). Plant Growth Regul 49:157–165

    Article  CAS  Google Scholar 

  24. Shi H, Lee BH, Wu SJ, Zhu JK (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21:81–85

    Article  CAS  PubMed  Google Scholar 

  25. Waditee R, Hibino T, Nakamura T, Incharoensakdi A, Takabe T (2002) Overexpression of a Na+/H+ antiporter confers salt tolerance on a freshwater cyanobacterium, making it capable of growth in sea water. Proc Natl Acad Sci USA 99:4109–4114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Maathuis FJM, Amtmann A (1999) K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Ann Bot 84:123–133

    Article  CAS  Google Scholar 

  27. Maser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJ, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Rus A, Lee BH, Munoz-Mayor A, Sharkhuu A, Miura K, Zhu JK, Bressan RA, Hasegawa PM (2004) AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta. Plant Physiol 136:2500–2511

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Gao S, Zhai H, He S, Liu Q (2012) Overexpression of SOS genes enhanced salt tolerance in sweet potato. J Integr Agri 11:378–386

    Article  CAS  Google Scholar 

  30. Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plant. American Society of Plant Physiologists, Rockville, pp 1158–1203

    Google Scholar 

  31. Munns R (2002) Comparative physiology of salt and water stress. Plant, Cell Environ 25:239–250

    Article  CAS  Google Scholar 

  32. Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in arabidopsis. Science 285:1256–1258

    Article  CAS  PubMed  Google Scholar 

  33. Gaxiola RA, Li J, Undurraga S, Dang LM, Allen GJ, Alper SL, Fink GR (2001) Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci USA 98:11444–11449

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. **ong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant, Cell Environ 25:131–139

    Article  CAS  Google Scholar 

  35. Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223

    Article  CAS  Google Scholar 

  36. Inan G, Zhang Q, Li P, Wang Z, Cao Z, Zhang H, Zhang C, Quist TM, Goodwin SM, Zhu J, Shi H, Damsz B, Charbaji T, Gong Q, Ma S, Fredricksen M, Galbraith DW, Jenks MA, Rhodes D, Hasegawa PM, Bohnert HJ, Joly RJ, Bressan RA, Zhu J-K (2004) Salt cress. A halophyte and cryophyte arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiol 135:1718–1737

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Kant S, Kant P, Raveh E, Barak S (2006) Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T. halophila. Plant, Cell Environ 29:1220–1234

    Article  CAS  Google Scholar 

  38. Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28:1057–1060

    Article  CAS  Google Scholar 

  39. Hong Z, Lakkineni K, Zhang Z, Verma DP (2000) Removal of feedback inhibition of delta(1)-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Burdon RH, O’Kane D, Fadzillah N, Gill V, Boyd PA, Finch RR (1996) Oxidative stress and responses in Arabidopsis thaliana and Oryza sativa subjected to chilling and salinity stress. Biochem Soc Trans 24:469–472

    Article  CAS  PubMed  Google Scholar 

  41. Asada K (1997) The role of ascorbate peroxidase and monodehydroascorbate reductase in H2O2 scavenging in plants. In Scandalios JG (eds) Oxidative stress and the molecular biology of antioxidant defenses. Cold Spring Harbor, Cold Spring Harbor Laboratory Press, NY, pp. 715–735

  42. Tsugane K, Kobayashi K, Niwa Y, Ohba Y, Wada K, Kobayashi H (1999) A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification. Plant Cell 11:1195–1206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Mittova V, Guy M, Tal M, Volokita M (2004) Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. J Exp Bot 55:1105–1113

    Article  CAS  PubMed  Google Scholar 

  44. Roxas VP, Smith RK Jr, Allen ER, Allen RD (1997) Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nat Biotechnol 15:988–991

    Article  CAS  PubMed  Google Scholar 

  45. Allen RD, Webb RP, Schake SA (1997) Use of transgenic plants to study antioxidant defenses. Free Radic Biol Med 23:473–479

    Article  CAS  PubMed  Google Scholar 

  46. Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  48. Zhao F, Guo S, Zhang H, Zhao Y (2006) Expression of yeast SOD2 in transgenic rice results in increased salt tolerance. Plant Sci 170:216–224

    Article  CAS  Google Scholar 

  49. Gupta AS, Berkowitz GA (1988) Chloroplast osmotic adjustment and water stress effects on photosynthesis. Plant Physiol 88:026–200

    Article  Google Scholar 

Download references

Acknowledgments

This study is support by the National Natural Science Foundation of China (31171987), 948 Project of Ministry of Agriculture (Grant No. 2011-G17), the Fundamental Research Funds for the Central Universities (KYZ201112), the Program for New Century Excellent Talents in University of Chinese Ministry of Education (Grant No. NCET-10-0492), Sci-Tech Support Plan of Jiangsu Province (BE2010303, BE2011325, BE2012350), and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumei Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, J., Song, A., Guan, Z. et al. The over-expression of Chrysanthemum crassum CcSOS1 improves the salinity tolerance of chrysanthemum. Mol Biol Rep 41, 4155–4162 (2014). https://doi.org/10.1007/s11033-014-3287-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3287-2

Keywords

Navigation