Log in

Inhibiting UHRF1 expression enhances radiosensitivity in human esophageal squamous cell carcinoma

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Radiotherapy is an effective treatment for some esophageal cancers, but the molecular mechanisms of radiosensitivity remain unknown. Ubiquitin-like with PHD and ring finger domains 1 (UHRF1) is a novel nuclear protein which is overexpressed in various cancers but not yet examined in esophageal squamous cell carcinoma (ESCC). The correlation between UHRF1 and the radioresistance in ESCC is still unclear. In the present study, the expression of UHRF1 was examined by immunohistochemistry in specimens of ESCC patients treated with radiotherapy. The results showed that UHRF1 was significantly overexpressed in ESCC specimens. Overexpression of UHRF1 correlated significantly with advanced T-stage, positive lymph node metastasis and poor differentiation. In addition, UHRF1 was associated with radiotherapy response, in which overexpression of UHRF1 was observed more frequently in the radioresistant group than in the effective group. At the molecular level, inhibition of UHRF1 by lentivirus-mediated shRNA targeting UHRF1 increased the radiosensitivity and apoptosis, while decreased radiation-induced G2/M phase arrest in TE-1 cells. Moreover, inhibition of UHRF1 resulted in higher residual γH2AX expression after irradiation, but not initial γH2AX. Further study showed that inhibition of UHRF1 down-regulated the endogenous expressions of DNA repair protein Ku70 and Ku80 in TE-1 cells, and significantly inhibited the increase of these proteins after irradiation. Above all, our data suggested that UHRF1 might play an important role in radioresistance of ESCC, and inhibition of UHRF1 can increase the radiosensitivity of TE-1 cells by altering cell cycle progression, enhancing apoptosis, and decreasing DNA damage repair capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Enzinger PC, Mayer RJ (2003) Esophageal cancer. N Engl J Med 349:2241–2252

    Article  CAS  PubMed  Google Scholar 

  2. Parkin DM, Bray F, Ferlay J et al (2002) Global cancer statistics. CA Cancer J Clin 55:74–108

    Article  Google Scholar 

  3. Borghesi S, Hawkins MA, Tait D (2008) Oesophagectomy after definitive chemoradiation in patients with locally advanced oesophageal cancer. Clin Oncol 20:221–226

    Article  CAS  Google Scholar 

  4. Hopfner R, Mousli M, Jeltsch JM et al (2000) ICBP90, a novel human CCAAT binding protein, involved in the regulation of topoisomerase IIalpha expression. Cancer Res 60:121–128

    CAS  PubMed  Google Scholar 

  5. Muto M, Utsuyama M, Horiguchi T et al (1995) The characterization of the monoclonal antibody Th-10a, specific for a nuclear protein appearing in the S phase of the cell cycle in normal thymocytes and its unregulated expression in lymphoma cell lines. Cell Prolif 28:645–657

    Article  CAS  PubMed  Google Scholar 

  6. Hashimoto H, Horton JR, Zhang X et al (2009) UHRF1, a modular multi-domain protein, regulates replication-coupled crosstalk between DNA methylation and histone modifications. Epigenetics 4:8–14

    Article  CAS  PubMed  Google Scholar 

  7. Karagianni P, Amazit L, Qin J et al (2008) ICBP90, a novel methyl K9 H3 binding protein linking protein ubiquitination with heterochromatin formation. Mol Cell Biol 28:705–717

    Article  CAS  PubMed  Google Scholar 

  8. Jeanblanc M, Mousli M, Hopfner R et al (2005) The retinoblastoma gene and its product are targeted by ICBP90: a key mechanism in the G1/S transition during the cell cycle. Oncogene 24:7337–7345

    Article  CAS  PubMed  Google Scholar 

  9. Bostick M, Kim JK, Esteve PO et al (2007) UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317:1760–1764

    Article  CAS  PubMed  Google Scholar 

  10. Avvakumov GV, Walker JR, Xue S et al (2008) Structural basis for recognition of hemimethylated DNA by the SRA domain of human UHRF1. Nature 455:822–825

    Article  CAS  PubMed  Google Scholar 

  11. Hashimoto H, Horton JR, Zhang X et al (2008) The SRA domain of UHRF1 flips 5-methylcytosine out of the DNA helix. Nature 455:826–829

    Article  CAS  PubMed  Google Scholar 

  12. Arita K, Ariyoshi M, Tochio H et al (2008) Recognition of hemimethylated DNA by the SRA protein UHRF1 by a base-flip** mechanism. Nature 455:818–821

    Article  CAS  PubMed  Google Scholar 

  13. Unoki M, Nishidate T, Nakamura Y (2004) ICBP90, an E2F–1 target, recruits HDAC1 and binds to methyl-CpG through its SRA domain. Oncogene 23:7601–7610

    Article  CAS  PubMed  Google Scholar 

  14. Citterio E, Papait R, Nicassio F et al (2004) Np95 is a histone-binding protein endowed with ubiquitin ligase activity. Mol Cell Biol 24:2526–2535

    Article  CAS  PubMed  Google Scholar 

  15. Jenkins Y, Markovtsov V, Lang W et al (2005) Critical role of the ubiquitin ligase activity of UHRF1, a nuclear RING finger protein, in tumor cell growth. Mol Biol Cell 16:5621–5629

    Article  CAS  PubMed  Google Scholar 

  16. Sharif J, Muto M, Takebayashi S et al (2007) The SRA protein Np95 mediates epigenetic inheritance by recruiting DNMT1 to methylated DNA. Nature 450:908–912

    Article  CAS  PubMed  Google Scholar 

  17. Kim JK, Esteve PO, Jacobsen SE et al (2009) UHRF1 binds G9a and participates in p21 transcriptional regulation in mammalian cells. Nucleic Acids Res 37:493–505

    Article  CAS  PubMed  Google Scholar 

  18. Achour M, Jacq X, Ronde P et al (2008) The interaction of the SRA domain of ICBP90 with a novel domain of DNMT1 is involved in the regulation of VEGF gene expression. Oncogene 27:2187–2197

    Article  CAS  PubMed  Google Scholar 

  19. Arima Y, Hirota T, Bronner C et al (2004) Down-regulation of nuclear protein ICBP90 by p53/p21Cip1/WAF1-dependent DNA damage checkpoint signals contributes to cell cycle arrest at G1/S transition. Genes Cells 9:131–142

    Article  CAS  PubMed  Google Scholar 

  20. Alhosin M, Abusnina A, Achour M et al (2010) Induction of apoptosis by thymoquinone in lymphoblastic leukemia Jurkat cells is mediated by a p73-dependent pathway which targets the epigenetic integrator UHRF1. Biochem Pharmacol 79:1251–1260

    Article  CAS  PubMed  Google Scholar 

  21. Bronner C, Fuhrmann G, Chédin Fl et al (2009) UHRF1 links the histone code and DNA methylation to ensure faithful epigenetic memory inheritance. Genet Epigenet 2:29–36

    CAS  Google Scholar 

  22. Bronner C, Chataigneau T, Schini-Kerth VB et al (2007) The “Epigenetic Code Replication Machinery”, ECREM: a promising drugable target of the epigenetic cell memory. Curr Med Chem 14:2629–2641

    Article  CAS  PubMed  Google Scholar 

  23. Hopfner R, Mousli M, Oudet P et al (2002) Overexpression of ICBP90, a novel CCAAT-binding protein, overcomes cell contact inhibition by forcing topoisomerase IIα expression. Anticancer Res 22:3165–3170

    CAS  PubMed  Google Scholar 

  24. Bronner C, Hopfner R, Mousli M (2002) Transcriptional regulation of the topoisomerase II alpha gene. Anticancer Res 22:605–612

    CAS  PubMed  Google Scholar 

  25. Bronner C, Achour A, Arima Y et al (2007) The UHRF family: oncogenes that are drugable targets for cancer therapy in the near future? Pharmacol Ther 115:419–434

    Article  CAS  PubMed  Google Scholar 

  26. Unoki M, Brunet J, Mousli M (2009) Drug discovery targeting epigenetic codes: the great potential of UHRF1, which links DNA methylation and histone modifications, as a drug target in cancers and toxoplasmosis. Biochem Pharmacol 78:279–288

    Article  Google Scholar 

  27. Lorenzato M, Caudroy S, Bronner C et al (2005) Cell cycle and/or proliferation markers: what is the best method to discriminate cervical high-grade lesions? Hum Pathol 36:1101–1107

    Article  CAS  PubMed  Google Scholar 

  28. Crnogorac-Jurcevic T, Gangeswaran R, Bhakta V et al (2005) Proteomic analysis of chronic pancreatitis and pancreatic adenocarcinoma. Gastroenterology 129:1454–1463

    Article  CAS  PubMed  Google Scholar 

  29. Unoki M, Kelly JD, Neal DE et al (2009) UHRF1 is a novel molecular marker for diagnosis and the prognosis of bladder cancer. Br J Cancer 101:98–105

    Article  CAS  PubMed  Google Scholar 

  30. Unoki M, Daigo Y, Koinuma J et al (2012) UHRF1 is a novel diagnostic marker of lung cancer. Br J Cancer 103:217–222

    Article  Google Scholar 

  31. Daskalos A, Oleksiewicz U, Filia A et al (2011) UHRF1-mediated tumor suppressor gene inactivation in nonsmall cell lung cancer. Cancer 117:1027–1037

    Article  CAS  PubMed  Google Scholar 

  32. Muto M, Kanari Y, Kubo E et al (2002) Targeted disruption of NP95 gene renders murine embryonic stem cells hypersensitive to DNA damaging agents and DNA replication blocks. J Biol Chem 277:34549–34555

    Article  CAS  PubMed  Google Scholar 

  33. Sun Y (2003) Targeting E3 ubiquitin ligases for cancer therapy. Cancer Biol Ther 2:623–629

    CAS  PubMed  Google Scholar 

  34. Un F, Oi C, Prosser M, Wang N et al (2006) Modulating ICBP90 to suppress human ribonucleotide reductase M2 induction restores sensitivity to hydroxyurea cytotoxicity. Anticancer Res 26:2761–2767

    CAS  PubMed  Google Scholar 

  35. Li XL, Meng QH, Fan SJ (2009) Adenovirus-mediated expression of UHRF1 reduces the radiosensitivity of cervical cancer HeLa cells to gamma-irradiation. Acta Pharmacol Sin 30:458–466

    Article  CAS  PubMed  Google Scholar 

  36. Li XL, Meng QH, Rosen EM et al (2011) UHRF1 confers radioresistance to human breast cancer cells. Int J Radiat Biol 87:263–273

    Article  CAS  PubMed  Google Scholar 

  37. Kihara C, Seki T, Furukawa Y et al (2000) Mutations in Zinc-binding domains of p53 as a prognostic marker of esophageal cancer patients. Cancer Res 91:190–198

    CAS  Google Scholar 

  38. Casson AG, Tammemagi M, Eskandarian S et al (1998) p53 alterations in esophageal cancer: association with clinicopathological features, risk factors, and survival. Mol Pathol 51:71–79

    Article  CAS  PubMed  Google Scholar 

  39. Wang Q, Fan S, Eastman A et al (1996) UCN-01: a potent abrogator of G2 checkpoint function in cancer cells with disrupted p53. J Natl Cancer Inst 88:956–965

    Article  CAS  PubMed  Google Scholar 

  40. Suganuma M, Kawabe T, Hori H et al (1999) Sensitization of cancer cells to DNA damage-induced cell death by specific cell cycle G2 checkpoint abrogation. Cancer Res 59:5887–5891

    CAS  PubMed  Google Scholar 

  41. Tomamoto T, Ohnishi K, Takahashi A et al (1999) Correlation between γ-ray-induced G2 arrest and radioresistance in two human cancer cells. Int J Radiat Oncol Biol Phys 44:905–909

    Article  Google Scholar 

  42. Olive PL, Durand RE (1997) Apoptosis: an indicator of radiosensitivity in vitro? Int J Radiat Biol 71:695–707

    Article  CAS  PubMed  Google Scholar 

  43. Dubray B, Breton C, Delic J et al (1997) In vitro radiation-induced apoptosis and tumour response to radiotherapy: a prospective study in patients with non-Hodgkin lymphomas treated by low-dose irradiation. Int J Radiat Biol 72:759–760

    Article  CAS  PubMed  Google Scholar 

  44. Aldridge DR, Radford IR (1998) Explaining differences in sensitivity to killing by ionizing radiation between human lymphoid cell lines. Cancer Res 58:2817–2824

    CAS  PubMed  Google Scholar 

  45. Sirzen F, Zhivotovsky B, Nilsson A et al (1998) Higher spontaneous apoptotic index in smallcell compared with non-small-cell lung carcinoma cell lines: lack of correlation with Bcl-2/Bax. Lung Cancer 22:1–13

    Article  CAS  PubMed  Google Scholar 

  46. Shrivastav M, De Haro LP, Nickoloff JA (2008) Regulation of DNA double-strand break repair pathway choice. Cell Res 18:134–147

    Article  CAS  PubMed  Google Scholar 

  47. Mladenov E, Iliakis G (2011) Induction and repair of DNA double strand breaks: the increasing spectrum of non-homologous end joining pathways. Mutat Res 7:61–72

    Google Scholar 

Download references

Acknowledgments

We thank Dr Haili Zhang for critical reading and revising of this manuscript, Dr Liang Liu for assistance with fluorescent investigation, Fuhe Lu, Li He and other members of the Radiation Oncology Research laboratories for technical help and useful advices on the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yadi Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, C., Wang, Y., Zhang, F. et al. Inhibiting UHRF1 expression enhances radiosensitivity in human esophageal squamous cell carcinoma. Mol Biol Rep 40, 5225–5235 (2013). https://doi.org/10.1007/s11033-013-2559-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2559-6

Keywords

Navigation