Log in

IiSDD1, a gene responsive to autopolyploidy and environmental factors in Isatis indigotica

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

In plants, stomata play a pivotal role in the regulation of gas exchange and are distributed throughout the aerial epidermis. SDD1, a gene isolated from Arabidopsis thaliana has been demonstrated to specialize in stomatal density and distribution. In our present study, a comprehensive survey of global gene expression performed by using an A. thaliana whole genome Affymetrix gene chip revealed SDD1 tends to be significantly lower in tetraploid Isatis indigotica than in diploid ones. To intensively investigate different SDD1 expression in response to polyploidy, a full-length cDNA clone (IiSDD1) encoding SDD1 was isolated from the traditional Chinese medicinal herb I. indigotica cDNA library. IiSDD1 shared a high level of identity with that from A. thaliana, containing some basic features of subtilases: D, H and S regions, as well as a substrate-binding site. Real-time quantitative PCR analysis indicated that IiSDD1 was constitutively expressed in all tested tissues, including roots, stems and leaves, both in tetraploid and diploid I. indigotica, and with the highest expression in leaves. In addition, IiSDD1 was also found to be down-regulated by signalling molecules for plant defence responses, such as abscisic acid (100 μM) and gibberellin (100 mg/L), as well as by environmental stresses including salt, darkness, coldness and drought. Our study, for the first time, indicates SDD1 participates not only in the defense/stress responsive pathways, but also probably involves in plants polyploidy evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zhao LM (2007) Pharmacological research and clinical application in Isatidis indigotica Fort. J Chin Med Res 7:141–143

    CAS  Google Scholar 

  2. Wang Y, Qiao CZ, Liu S, Hang HM (2000) Evaluation on antiendotoxic action and antiviral action in vitro of tetraploid Isatis indigotica. Chin Trad Herb 25:327–329

    CAS  Google Scholar 

  3. Qiao CZ, Wu MS, Dai FB, Cui X, Li L (1989) Studies on polyploid breeding of Isatis indigotica Fort. Acta Botanica Sinica 31:678–683

    Google Scholar 

  4. Qiao CZ, Li H (1994) Cultivation and popularization for tetraploidy strain of Isatis indigotica. Chin Trad Herb 17:3–6

    Google Scholar 

  5. The Arabidopsis Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  6. Schranz ME, Osborn TC (2000) Novel flowering time and variation in the resynthesized polyploid Brassica napus. J Hered 91:242–246

    Article  CAS  PubMed  Google Scholar 

  7. Lee HS, Chen ZJ (2001) Protein-coding genes are epigenetically regulated in Arabidopsis polyploids. Proc Natl Acad Sci USA 98:6753–6758

    Article  CAS  PubMed  Google Scholar 

  8. Kashkush K, Feldman M, Levy AA (2003) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet 33:102–106

    Article  CAS  PubMed  Google Scholar 

  9. Lu BB, Pan XZ, Zhang L, Huang BB, Sun LN, Li B, Yi B, Zheng SQ, Yu XJ, Ding RX, Chen WS (2006) Genes Responsive to autopolyploidy in Isatis indigotica using Arabidopsis thaliana affymetrix genechips. Plant Mol Biol Rep 24:197–204

    Article  CAS  Google Scholar 

  10. Berger D, Altmann T (2000) A subtilisin-like serine protease involved in the regulation of stomatal density and distribution in Arabidopsis thaliana. Genes Dev 14:1119–1131

    CAS  PubMed  Google Scholar 

  11. Schlüter U, Muschak M, Berger D, Altmann T (2003) Photosynthetic performance of an Arabidopsis mutant with elevated stomatal density (sdd1-1) under different light regimes. J Exp Bot 54:867–874

    Article  PubMed  Google Scholar 

  12. Von GU, Berger D, Altmann T (2002) The subtilisin-like serine protease SDD1 mediates cell-to-cell signalling during Arabidopsis stomatal development. Plant Cell 14:1527–1539

    Article  Google Scholar 

  13. Jaakola L, Pirttila AM, Halonen M, Hohtola A (2001) Isolation of high quality RNA from bilberry (Vaccinium myrtillus L.) fruit. Mol Biotechnol 19:201–203

    Article  CAS  PubMed  Google Scholar 

  14. Rechards EJ (1995) Preparation and analysis of DNA. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Short protocol in molecular biology. Wiley, New York, pp 36–38

    Google Scholar 

  15. Lu BB, Du Z, Ding RX, Zhang L, Yu XJ, Liu CH, Chen WS (2006) Cloning and characterization of a differentially expressed phenylalanine ammonialyase gene (IiPAL) after genome duplication from tetraploid Isatis indigotica Fort. J Integr Plant Biol 48:1439–1449

    Article  CAS  Google Scholar 

  16. Lu BB, Ding RX, Zhang L, Yu XJ, Huang BB, Chen WS (2006) Molecular cloning and characterization of a novel calcium-dependent protein kinase gene IiCPK2 responsive to polyploidy from tetraploid Isatis indigotica. J Biochem Mol Biol 39:607–617

    CAS  PubMed  Google Scholar 

  17. Blanc G, Wolfe KH (2004) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16:1679–1691

    Article  CAS  PubMed  Google Scholar 

  18. Thacker C, Peters K, Stayko M, Rose AM (1995) The bli-4 locus of Caenorhabditis elegans encodes structurally distinct kex2/subtilisin-like endoproteases essential for early development and adult morphology. Genes Dev 9:956–971

    Article  CAS  PubMed  Google Scholar 

  19. Cui Y, Jean F, Thomas G, Christian JL (1998) BMP-4 is proteolytically activated by furin and/or PC6 during vertebrate embryonic development. EMBO J 16:4735–4743

    Article  Google Scholar 

  20. Steiner DF (1998) The proprotein convertases. Curr Opin Chem Biol 2:31–39

    Article  CAS  PubMed  Google Scholar 

  21. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  22. Thompson JD, Higgins DG, Gibson TJ (1994) Clustal-W—improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  Google Scholar 

  23. Schürmann B (1959) Über den Einfluss der Hydratur und des Lichtes auf die Ausbildung der Stomata-Initialen. Flora 147:471–520

    Google Scholar 

  24. Srivastava A, Lu Z, Zeiger E (1995) Modification of guard cell properties in advanced lines of pima cotton bred for higher yields and heat resistance. Plant Sci 108:125–131

    Article  CAS  Google Scholar 

  25. Gay AP, Hurd RG (1975) The influence of light on stomatal density in the tomato. New Phytol 75:37–46

    Article  Google Scholar 

  26. Schoch PG, Zinsou C, Sibu M (1980) Dependence of stomatal index on environmental factors during stomata differentiation in leaves of Vigna signensis L. J Exp Bot 31:1211–1216

    Article  Google Scholar 

  27. Rahim MA, Fordham R (1991) Effect of shade on leaf and cell size and number of epidermal cells in garlic (Allium sativum). Ann Bot 67:167–171

    Google Scholar 

  28. Stuart C, Julie EG (2008) Influence of environmental factors on stomatal development. New Phytol. doi:10.1111/j.1469-8137.2007.02351.x

  29. Qin XQ, Jan ADZ (2002) Overexpression of a 9-cis-epoxycarotenoid dioxygenase gene in Nicotiana plumbaginifolia increases abscisic acid and phaseic acid levels and enhances drought tolerance. Plant Physiol 128:544–551

    Article  CAS  PubMed  Google Scholar 

  30. Vanessa M, Kunimi M, Hanae K, Keiichi I, Masanori O, Eiji N, Florian B, Tomokazu K (2008) Transient expression of AtNCED3 and AAO3 genes in guard cells causes stomatal closure in Vicia faba. J Plant Res 121:125–131

    Article  Google Scholar 

  31. Franks PJ, Farquhar GD (2001) The effect of exogenous abscisic acid on stomatal development, stomatal mechanics, and leaf gas exchange in Tradescantia virginiana. Plant Physiol 125:935–942

    Article  CAS  PubMed  Google Scholar 

  32. Saibo NJM, Vriezen WH, Beemster GTS, Van DSD (2003) Growth and stomatal development of Arabidopsis hypocotyls are controlled by gibberellins and modulated by ethylene and auxins. Plant J 33:989–1000

    Article  CAS  PubMed  Google Scholar 

  33. Chaerle L, Saibo N, Van DSD (2005) Tuning the pores: towards engineering plants for improved water use efficiency. Trends Biotechnol 23:308–315

    Article  CAS  PubMed  Google Scholar 

  34. Ribeiro A, Akkermans ADL, van Kammen A, Bisseling T, Pawlowski K (1995) A nodule-specific gene encoding a subtilisin-like protease is expressed in early stages of actinorhizal nodule development. Plant Cell 7:785–794

    Article  CAS  PubMed  Google Scholar 

  35. Jorda L, Coego A, Conejero V, Vera P (1999) Genomic cluster containing four differentially regulated subtilisinlike processing protease genes is in tomato plants. J Biol Chem 274:2360–2365

    Article  CAS  PubMed  Google Scholar 

  36. Yamagata H, Masuzawa T, Nagaoka Y, Ohnishi T, Iwasaki T (1994) Cucumisin, a serine protease from melon fruits, shares structural homology with subtilisin and is generated from a large precursor. J Biol Chem 269:32725–32731

    CAS  PubMed  Google Scholar 

  37. Wise RJ, Barr PJ, Wong PA, Kiefer MC, Brake AJ, Kaufmann RJ (1990) Expression of a human proprotein processing enzyme: Correct cleavage of the von Willebrand factor precursor at a paired basic amino acid site. Proc Natl Acad Sci USA 87:9378–9382

    Article  CAS  PubMed  Google Scholar 

  38. Smeekens SP, Steiner DF (1990) Identification of a human insulinoma cDNA encoding a novel mammalian protein structurally related to the yeast dibasic processing protease KEX2. J Biol Chem 265:2997–3000

    CAS  PubMed  Google Scholar 

  39. Mizuno K, Nakamura T, Ohshima T, Tanaka S, Matsuo H (1988) Yeast KEX2 gene encodes an endopeptidase homologous to subtilisin-like serine proteases. Biochem Biophys Res Commun 156:246–254

    Article  CAS  PubMed  Google Scholar 

  40. Wells JA, Ferrari E, Henner DJ, Estell DA, Chen EY (1983) Cloning, sequencing, and secretion of Bacillus amyloliquefaciens subtilisin in Bacillus subtilis. Nucleic Acids Res 11:7911–7919

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was financially supported by National Natural Science Foundation of China (30600807); Modernization of traditional Chinese medicine foundation (08DZ1971502) and western development cooperation foundation (084358014), Shanghai Science and Technology Committee.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wansheng Chen or Lei Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary data 1

Nucleotide sequence and the deduced amino acid sequence of IiSDD1. The start codon (ATG) is in italics and the stop codon (TGA) is in bold. The typical domains of subtilisin-like serine proteases: three characteristic catalytic domains (D, H and S regions) and a substrate-binding site (N) are boxed. (GIF 49 kb)

Supplementary data 2

The 5′ flanking sequence of IiSDD1. The putative transcription initiation site A is shown in grey background. The most probable TATA box is boxed and in bold. The CAAT boxes are underlined. The cis-acting regulatory elements involved in abscisic acid responsiveness is underlined and in grey background. Three defense and stress responsive elements are in bold and in grey background. The light responsiveness-related elements are box, including 1 ACE, 2 AE-box, 1 Box I, 1 CATT-motif, 2 G-Box, 4 G-box, 1 GA-motif, 2 GAG-motif, 1 GT1-motif, 1 I-box, 1 Sp1, 3 TCT-motif. (GIF 34 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

**ao, Y., Yu, X., Chen, J. et al. IiSDD1, a gene responsive to autopolyploidy and environmental factors in Isatis indigotica . Mol Biol Rep 37, 987–994 (2010). https://doi.org/10.1007/s11033-009-9776-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9776-z

Keywords

Navigation