Log in

A review on the synthesis of heteroannulated quinolones and their biological activities

  • Comprehensive review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The quinoline scaffold has become an important construction motif for the development of new drugs. The quinolones and their heteroannulated derivatives have high importance due to their diverse spectrum of biological activities as antifungal, anti-inflammatory, anti-diabetes, anti-Alzheimer’s disease, antioxidant and diuretic activities. This review summarizes the various new, efficient and convenient synthetic approaches to synthesize diverse quinolone-based scaffolds and their biological activities. We also dealt with the important mechanism, the route and type of reactions of the obtained products. The biological activities of some heteroannulated quinolones were also discussed.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40
Scheme 41
Scheme 42
Scheme 43
Scheme 44
Scheme 45
Scheme 46
Scheme 47
Scheme 48
Scheme 49
Scheme 50
Scheme 51
Scheme 52
Scheme 53
Scheme 54
Scheme 55
Scheme 56
Scheme 57
Scheme 58
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36

Similar content being viewed by others

References

  1. Akhtar MJ, Yar MS, Khan AA, Ali Z, Haider MR (2017) Recent advances in the synthesis and anticancer activity of some molecules other than nitrogen containing heterocyclic moeities. Mini-Rev Med Chem 17(17):1602–1632

    Article  CAS  PubMed  Google Scholar 

  2. Arafa RK, Hegazy GH, Piazza GA, Abadi AH (2013) Synthesis and in vitro antiproliferative effect of novel quinoline-based potential anticancer agents. Eur J Med Chem 63:826–832

    Article  CAS  PubMed  Google Scholar 

  3. Lee H-Y, Chang C-Y, Su C-J, Huang H-L, Mehndiratta S, Chao Y-H, Hsu C-M, Kumar S, Sung T-Y, Huang Y-Z (2016) 2-(Phenylsulfonyl) quinoline N-hydroxyacrylamides as potent anticancer agents inhibiting histone deacetylase. Eur J Med Chem 122:92–101

    Article  CAS  PubMed  Google Scholar 

  4. Afzal O, Kumar S, Haider MR, Ali MR, Kumar R, Jaggi M, Bawa S (2015) A review on anticancer potential of bioactive heterocycle quinoline. Eur J Med Chem 97:871–910

    Article  CAS  PubMed  Google Scholar 

  5. Ramesh M, Mohan P, Shanmugam P (1984) A convenient synthesis of flindersine, atanine and their analogues. Tetrahedron 40(20):4041–4049

    Article  CAS  Google Scholar 

  6. Chen I-S, Tsai I-W, Teng C-M, Chen J-J, Chang Y-L, Ko F-N, Lu MC, Pezzuto JM (1997) Pyranoquinoline alkaloids from Zanthoxylum simulans. Phytochemistry 46(3):525–529

    Article  CAS  Google Scholar 

  7. Wabo HK, Tane P, Connolly JD, Okunji CC, Schuster BM, Iwu MM (2005) Tabouensinium chloride, a novel quaternary pyranoquinoline alkaloid from Araliopsis tabouensis. Nat Prod Re 19(6):591–595

    Article  CAS  Google Scholar 

  8. Magesh CJ, Makesh SV, Perumal PT (2004) Highly diastereoselective inverse electron demand (IED) Diels-Alder reaction mediated by chiral salen–AlCl complex: the first, target-oriented synthesis of pyranoquinolines as potential antibacterial agents. Biorg Med chem lett 14(9):2035–2040

    Article  CAS  Google Scholar 

  9. Siliveri S (2017) Design, synthesis and antibacterial evaluation of pyrano[3,2-h]quinoline carbonitriles. Int J Gre Pharm (IJGP) 11(03):423–429

    Google Scholar 

  10. Martínez-Grau A, Marco J (1997) Friedländer reaction on 2-amino-3-cyano-4H-pyrans: synthesis of derivatives of 4H-pyran[2,3-b]quinoline, new tacrine analogues. Biorg Med chem lett 7(24):3165–3170

    Article  Google Scholar 

  11. Kamperdick C, Van NH, Van Sung T, Adam G (1999) Bisquinolinone alkaloids from Melicope ptelefolia. Phytochem 50(1):177–181

    Article  CAS  Google Scholar 

  12. Chen J-J, Chen P-H, Liao C-H, Huang S-Y, Chen I-S (2007) New phenylpropenoids, bis(1-phenylethyl)phenols, bisquinolinone alkaloid, and anti-inflammatory constituents from zanthoxylum integrifoliolum. J Nat Prod 70(9):1444–1448

    Article  CAS  PubMed  Google Scholar 

  13. Isaka M, Tanticharoen M, Kongsaeree P, Thebtaranonth Y (2001) Structures of Cordypyridones A− D, Antimalarial N-Hydroxy-and N-Methoxy-2-pyridones from the Insect Pathogenic Fungus Cordyceps n ipponica. J Org Chem 66(14):4803–4808

    Article  CAS  PubMed  Google Scholar 

  14. Koizumi, F.; Fukumitsu, N.; Zhao, J.; Chanklan, R.; Miyakawa, T.; Kawahara, S.; Iwamoto, S.; Suzuki, M.; Kakita, S.; Rahayu, E. S. YCM1008A, a Novel Ca+2-Signaling Inhibitor, Produced by Fusarium sp. YCM1008. J. Antibiot. 2007, 60(7), 455–458.

  15. El-Agrody AM, Abd-Rabboh HS, Al-Ghamdi AM (2013) Synthesis, antitumor activity, and structure–activity relationship of some 4H-pyrano[3,2-h]quinoline and 7H-pyrimido[4′,5′:6, 5]pyrano[3,2-h]quinoline derivatives. Med Chem Res 22(3):1339–1355

    Article  CAS  Google Scholar 

  16. Hammouda MA, El-Hag FAA, El-Serwy WS, El-Manawaty M (2015) Synthesis and characterization of new fused 4H-Pyranquinoline carbonitrile derivatives with anticipated antitumor biological activity. Res J Pharm Bio Chem Sci 6(1):200–208

    Google Scholar 

  17. Fouda AM (2017) Halogenated 2-amino-4H-pyrano[3,2-h]quinoline-3-carbonitriles as antitumor agents and structure–activity relationships of the 4-,6-, and 9-positions. Med Chem Res 26(2):302–313

    Article  CAS  Google Scholar 

  18. Maalej, E.; Chabchoub, F.; Oset-Gasque, M. J.; Esquivias-Pérez, M.; González, M. P.; Monjas, L.; Pérez, C.; de los Ríos, C.; Rodríguez-Franco, M. I.; Iriepa, I. Synthesis, biological assessment, and molecular modeling of racemic 7-aryl-9,10,11,12-tetrahydro-7H-benzo[7,8]chromeno [2,3-b]quinolin-8-amines as potential drugs for the treatment of Alzheimer's disease. Eur. J. Med. Chem. 2012, 54, 750–763.

  19. Nesterova I, Alekseeva L, Andreeva N, Golovina S, Granik V (1995) Synthesis and study the pharmacological activity of derivatives of 5-dimethylaminopyrano[3,2-c]quinolin-2-ones. Pharm Chem J 29(2):111–114

    Article  Google Scholar 

  20. Aly AA, El-Sheref EM, Mourad A-FE, Brown AB, Bräse S, Bakheet ME, Nieger M (2018) Synthesis of spiro[indoline-3,4′-pyrano[3,2-c]quinolone]-3′-carbonitriles. Monat Chem- Chem Mon 149(3):635–644

    Article  CAS  Google Scholar 

  21. Aly AA, El-Sheref EM, Mourad A-FE, Bakheet ME, Bräse S, Nieger M (2019) One-pot synthesis of 2,3-bis-(4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)succinates and arylmethylene-bis-3,3′-quinoline-2-ones. Chem Pap 73(1):27–37

    Article  CAS  Google Scholar 

  22. Park S-J, Lee J-C, Lee K-I (2007) A facile synthesis of 4-hydroxycoumarin and 4-hydroxy-2-quinolone derivatives. Bull Korean Chem Soc 28(7):1203–1205

    Article  CAS  Google Scholar 

  23. Hamama WS, Hassanien AE-DE, Zoorob HH (2014) Studies on Quinolinedione: Synthesis, Reactions, and Applications. Synth Commun 44(13):1833–1858

    Article  CAS  Google Scholar 

  24. Kafka S, Klásek A, Polis J, Rosenbreierová V, Palík C, Mrkvička V, Košmrlj J (2008) The first entry to pyrrolo[2,3-c]quinoline-2,4(3H,5H)-diones. Tetrahedron 64(19):4387–4402

    Article  CAS  Google Scholar 

  25. Pitchai P, Uvarani C, Makhanya T, Gengan R, Mohan P (2014) Synthesis of cryptosanguinolentine and its phenyl derivative via eco-friendly sources. Res Rev J Chem 4:60–71

    Google Scholar 

  26. Chen Y-L, Chung C-H, Chen I-L, Chen P-H, Jeng H-Y (2002) Synthesis and cytotoxic activity evaluation of indolo-, pyrrolo-, and benzofuro-quinolin-2(1H)-ones and 6-anilinoindolo-quinoline derivatives. Biorg Med Chem 10(8):2705–2712

    Article  CAS  Google Scholar 

  27. Ye F, Liu Q, Cui R, Xu D, Gao Y, Chen H (2021) Diverse Functionalization of Tetrahydro-β-carbolines or Tetrahydro-γ-carbolines via Oxidative Coupling Rearrangement. J Org Chem 86(1):794–812

    Article  CAS  PubMed  Google Scholar 

  28. Ukrainets, I.; Taran, S.; Kamenetskaya, O.; Gorokhova, O.; Sidorenko, L.; Turov, A. 4-Hydroxyquinolin-2-ones. 45. Synthesis, Structure, and Biological Activity of N-Substituted 1H-4-Hydroxy-2-oxoquinoline-3-acetic Acid Amides. Chem. Heteterocyl. Compds. 2000, 36(11), 1319–1325.

  29. Hassanin HM, Ibrahim MA, Alnamer YA-S (2012) Synthesis and antimicrobial activity of some novel 4-hydroxyquinolin-2(1H)-ones and pyrano[3,2-c]quinolinones from 3-(1-ethy1-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-3-oxopropanoic acid. Turk J Chem 36(5):682–699

    CAS  Google Scholar 

  30. Bar G, Bini F, Parsons AF (2003) CAN-mediated oxidative free radical reactions in an ionic liquid. Synth Commun 33(2):213–222

    Article  CAS  Google Scholar 

  31. Aly AA, Ishak EA, Shwaky AM, Mohamed AH (2020) Formation of furo[3,2-c]quinolone-2-carbonitriles and 4-oxo-4,5-dihydrofuro[3,2-c]quinolone-2-carboxamides from reaction of quinoline-2,4-diones with 2-[bis(methylthio) methylene]malononitrile. Monat Chem-Chem Mon 151(2):223–229

    Article  CAS  Google Scholar 

  32. Aly, A. A.; Hassan, A. A.; Mohamed, N. K.; Abd El-Haleem, L. E.; Bräse, S. Regioselective synthesis of new 7,8-dichlorobenzofuro[3,2-c]quinoline-6,9,10(5H)-triones from reactions of 4-hydroxy-2-quinolones with 3,4,5,6-tetrachloro-1,2-benzoquinone. J. Chem. Res. 2020, 388–392.

  33. Hajdok, S.; Conrad, J. r.; Leutbecher, H.; Strobel, S.; Schleid, T.; Beifuss, U. The laccase-catalyzed domino reaction between catechols and heterocyclic 1,3-dicarbonyls and the unambiguous structure elucidation of the products by NMR spectroscopy and X-ray crystal structure analysis. J. Org. Chem. 2009, 74(19), 7230–7237.

  34. Aly AA, El-Sheref EM, Bakheet ME, Mourad MA, Bräse S, Ibrahim MA, Nieger M, Garvalov BK, Dalby KN, Kaoud TS (2019) Design, synthesis and biological evaluation of fused naphthofuro[3,2-c]quinoline-6,7,12-triones and pyrano[3,2-c]quinoline-6,7,8,13-tetraones derivatives as ERK inhibitors with efficacy in BRAF-mutant melanoma. Biorg Chem 82:290–305

    Article  CAS  Google Scholar 

  35. Aly AA, Hassan AA, Mohamed NK, El-Haleem LEA, Bräse S, Polamo M, Nieger M, Brown AB (2019) Synthesis of New Fused Heterocyclic 2-Quinolones and 3-Alkanonyl-4-Hydroxy-2-Quinolones. Molecules 24(20):3782–3794

    Article  PubMed Central  CAS  Google Scholar 

  36. Janni M, Arora S, Peruncheralathan S (2016) Double heteroannulation of S,N-acetals: a facile access to quinolone derivatives. Org Biomol Chem 14:8781–8788

    Article  CAS  PubMed  Google Scholar 

  37. Mekheimer RA, Al-Sheikh MA, Medrasi HY, Sadek KU (2020) Advancements in the synthesis of fused tetracyclic quinoline derivatives. RSC Adv 10(34):19867–19935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ling F, Zhang C, Ai C, Lv Y, Zhong W (2018) Metal-Oxidant-Free Cobalt-Catalyzed C (sp2)–H Carbonylation of ortho-Arylanilines: An Approach toward Free (NH)-Phenanthridinones. J Org Chem 83(10):5698–5706

    Article  CAS  PubMed  Google Scholar 

  39. Gao Y, Cai Z, Li S, Li G (2019) Rhodium (I)-catalyzed aryl C-H carboxylation of 2-arylanilines with CO2. Org Lett 21(10):3663–3669

    Article  CAS  PubMed  Google Scholar 

  40. Liang Z, Zhang J, Liu Z, Wang K, Zhang Y (2013) Pd (II)-catalyzed C (sp2)–H carbonylation of biaryl-2-amine: synthesis of phenanthridinones. Tetrahedron 69(31):6519–6526

    Article  CAS  Google Scholar 

  41. Görlitzer K, Gabriel B, Jomaa H, Wiesner J (2006) Thieno[3,2-c]chinolin-4-yl-amine–Synthese und Prüfung auf Wirksamkeit gegen Malaria. Die Pharmazie Inter J Pharm Sci 61(4):278–284

    Google Scholar 

  42. Herrero, M. T.; Tellitu, I.; Domı́nguez, E.; Hernández, S.; Moreno, I.; SanMartı́n, R. A General and efficient PIFA mediated synthesis of heterocycle-fused quinolinone derivatives. Tetrahedron 2002, 58(42), 8581–8589.

  43. Ukrainets, I.; Taran, S.; Sidorenko, L.; Gorokhova, O.; Turov, A. 4-Hydroxy-2-quinolones. Synthesis of 2R-oxazolo[4,5-c]quinolin-4(5H)-ones. Chem. Heteterocyl. Compds. 1997, 33(11), 1328–1333.

  44. Ukrainets, I.; Mospanova, E.; Gorokhova, O.; Shishkina, S. 4-Hydroxy-2-quinolones. Bromination of 1R-4-hydroxy-2-oxo-1,2-dihydroquinoline-3-carboxylic acid pyridinyl-methylene hydrazides. Chem. Heteterocyl. Compds. 2011, 47(8), 1014–1019.

  45. Sarveswari S, Vijayakumar V (2016) Synthesis and characterization of new 3-(4,5-dihydro-5-aryl)isoxazol-3-yl)-4-hydroxyquinolin-2(1H)-ones and 3-(4-styryl)isoxazolo[4,5-c]quinolin-4(5H)-one derivatives. Arab J Chem 9:S835–S839

    Article  CAS  Google Scholar 

  46. Chimichi S, Boccalini M, Matteucci A (2007) Unambiguous structure elucidation of the reaction products of 3-acyl-4-methoxy-1-methylquinolinones with hydroxylamine via NMR spectroscopy. Tetrahedron 63(47):11656–11660

    Article  CAS  Google Scholar 

  47. Ukrainets, I.; Jaradat, N.; Gorlacheva, I.; Gorokhova, O.; Sidorenko, L.; Turov, A. 4-Hydroxy-2-quinolones. Reaction of hydrazides of 1R-2-oxo-4-hydroxyquinoline-3-carboxylic acids with ethyl orthoformate. Chem. Heteterocyl. Compds. 2000, 36(2), 170–173.

  48. Ukrainets, I.; Taran, S.; Sidorenko, L.; Gorokhova, O.; Ogirenko, A.; Turov, A.; Filimonova, N. 4-Hydroxy-2-quinolones. 31. 3-Amino-2-oxo-4-hydroxyquinolines and their acyl derivatives. Chem. Heteterocyl. Compds. 1996, 32(8), 960–970.

  49. Stadlbauers W, Hojas G (2004) Ring closure reactions of 3-arylhydrazonoalkyl-quinolin-2-ones to 1-aryl-pyrazolo[4,3-c]quinolin-2-ones. J Heterocycl Chem 41(5):681–690

    Article  Google Scholar 

  50. Arasakumar T, Mathusalini S, Lakshmi K, Mohan PS, Ata A, Lin C-H (2016) Object-oriented synthetic approach toward angular and linear fused pyrazoloquinolines of biological importance with InCl3 catalyst. Synth Commun 46(3):232–241

    Article  CAS  Google Scholar 

  51. Feng B-B, Xu J, Zhang M-M, Wang X-S (2016) A convenient synthesis of spiro[isoxazole-pyrazoloquinoline] derivatives under catalyst-free conditions. Synthesis 48(1):65–72

    Google Scholar 

  52. Abass, M.; Hassanin, H. M.; Allimony, H. A.; Hassan, H. Substituted quinolinones. Regioselective synthesis of pyrazolo-, oxazolo-, and triazepinoquinoline derivatives. Chem. Heterocycl. Compod. 2015, 51(11–12), 1023–1029.

  53. Mrkvička V, Lyčka A, Rudolf O, Klásek A (2010) Reaction of 3-aminoquinoline-2, 4-diones with isothiocyanic acid—an easy pathway to thioxo derivatives of imidazo[1,5-c]quinazolin-5-ones and imidazo[4,5-c]quinolin-4-ones. Tetrahedron 66(43):8441–8445

    Article  CAS  Google Scholar 

  54. Kafka S, Klasek A, Polis J, Košmrlj J (2002) Syntheses of 3-aminoquinoline-2,4(1H,3H)-diones. Heterocycles 57(9):1659–1682

    Article  CAS  Google Scholar 

  55. Klásek A, Lyčka A, Rouchal M, Bartošík R (2020) Reaction of 1-substituted 3-(2-hydroxyethylamino)quinoline-2,4(1H,3H)-diones with isothiocyanic acid. Chem Heterocycl Compds 56:566–571

    Article  CAS  Google Scholar 

  56. Koubachi J, Berteina-Raboin S, Mouaddib A, Guillaumet G (2010) Intramolecular arylation reactions: first efficient synthesis of novel fused pyridoimidazoquinolinones or pyridoimidazoazepinones libraries. Tetrahedron 66(10):1937–1946

    Article  CAS  Google Scholar 

  57. Suzuki, F.; Kuroda, T.; Nakasato, Y.; Manabe, H.; Ohmori, K.; Kitamura, S.; Ichikawa, S.; Ohno, T. New Bronchodilators. 1. 1,5-Substituted lH-Imidazo[4,5-c]quinolin- 4(5H)-ones. J. Med. Chem. 1992, 35, 4045–4053.

  58. Ukrainets, I.; Yangyang, L.; Bereznyakova, N.; Turov, A. 4-Hydroxy-2-quinolones. 169. Synthesis and bromination of 1-allyl-3-(arylamino-methylene)quinoline-2,4- (1H,3H)-diones. Chem. Heterocycl. Compod. 2009, 45(10), 1235–1240.

  59. Rudolf O, Mrkvička V, Lyčka A, Rouchal M, Klásek A (2012) Modified Riemschneider Reaction of 3-Thiocyanatoquinolinediones. Helv Chim Acta 95(8):1352–1372

    Article  CAS  Google Scholar 

  60. Schwendt G, Glasnov T (2017) Intensified synthesis of [3,4-d]triazole-fused chromenes, coumarins, and quinolones. Monat Chem-Chem Month 148(1):69–75

    Article  CAS  Google Scholar 

  61. Abass, M.; Mohamed, E.-H. A.; Mayas, A. S.; Ibrahim, A. H. Substituted quinolinones. Part 17: Some nucleophilic reactions with 4-hydroxy-1-methyl-3-[(2-oxo-2H-chromen-3-yl)carbonyl]quinolin-2(1H)-one. J. Chem. Sci. 2012, 124(5), 1033–1041.

  62. Wang X-S, Zhang M-M, Zeng Z-S, Shi D-Q, Tu S-J, Wei X-Y, Zong Z-M (2005) A clean procedure for the synthesis of chromeno[4,3-b]benzo[f]quinoline and quinolino[4,3-b]benzo[f]quinoline derivatives in aqueous media. Chem Lett 34(10):1316–1317

    Article  CAS  Google Scholar 

  63. El-Taweel FM, Elagamey A-GA, Khalil MH (2013) Studies on quinolin-2(1H)-one derivatives: synthetic access to pyrano[3,2-c]quinoline and 3-substituted quinoline derivatives. Chem Sci Intern J 3:532–549

    CAS  Google Scholar 

  64. Dodia N, Shah A (2001) Synthesis of some tricyclic and tetracyclic ring systems built on 4-hydroxy-2-quinolones. Heterocycl Commun 7(3):289–294

    Article  CAS  Google Scholar 

  65. Wang X, Zeng Z, Shi D, Tu S, Wei X, Zong Z (2004) Study on the reaction of arylmethylidenemalononitriles with 4-hydroxy-1,2-dihydroquinolin-2-one. Chin J Org Chem 24(12):1595–1597

    CAS  Google Scholar 

  66. Gunasekaran P, Prasanna P, Perumal S, Almansour AI (2013) ZnCl2-catalyzed three-component domino reactions for the synthesis of pyrano[3,2-c]quinolin-5(6H)-ones. Tetrahedron Letts 54(25):3248–3252

    Article  CAS  Google Scholar 

  67. Zhu S, Wang J, Xu Z, Li J (2012) An efficient one-pot synthesis of pyrano[3,2-c]quinolin-2,5-dione derivatives catalyzed by L-proline. Molecules 17(12):13856–13863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. El-Sheref EM, Aly AA, Mourad A-FE, Brown AB, Bräse S, Bakheet ME (2018) Synthesis of pyrano[3,2-c]quinoline-4-carboxylates and 2-(4-oxo-1,4-dihydro-quinolin-3-yl)fumarates. Chem Pap 72(1):181–190

    Article  CAS  Google Scholar 

  69. Abass M, Mohamed EA, Ismail MM, Mayas AS (2011) Preparation and Some Reactions with 3-(Quinolin-3-yl)-3-Oxopropanoic Acid. J Mex Chem Soci 55(4):224–232

    CAS  Google Scholar 

  70. Ramadan M.; Elshaier, Y. A. M. M.; Aly, A. A.; Abdel-Aziz, M.; Fathy, H. M.; Brown, A. B.; Pridgen, J. R.; Dalby, K. N.; Kaoud, T. S. Development of 2'-amino-spiro[pyrano[3,2-c]quinoline]-3'-carbonitrile derivatives as ATP-Non-Competitive Src Inhibitors that Suppress Breast Cancer Cell migration and Proliferation. Bioorg. Chem. 2021, 116, 105344

  71. Majumdar K, Mukhopadhyay P (2003) Regioselective synthesis of 2H-benzopyrano[3,2-c]quinolin-7(8H)-ones by radical cyclization. Synthesis 1(1):0097–0100

    Article  Google Scholar 

  72. Hassanin HM, Abdel Kader D (2018) Synthesis of Some Novel Heteroannulated Pyrano[3,2-c]quinoline-2,5(6H)diones. J Heterocycl Chem 55(7):1685–1694

    Article  CAS  Google Scholar 

  73. Kiamehr M, Mohammadkhani L, Khodabakhshi MR, Jafari B, Langer P (2019) Synthesis of Tetrahydropyrazolo[4′,3′:5,6]pyrano[3,4-c]quinolones by Domino Knoevenagel/Hetero Diels-Alder Reaction. Synlett 30(15):1782–1786

    Article  CAS  Google Scholar 

  74. Kiamehr M, Alipour B, Mohammadkhani L, Jafari B, Langer P (2017) ZnBr2catalyzed domino Knoevenagel-hetero-Diels–Alder reaction: An efficient route to polycyclic thiopyranoindol annulated[3,4-c]quinolone derivatives. Tetrahedron 73(21):3040–3047

    Article  CAS  Google Scholar 

  75. Jayashree A, Rao VS, Darbarwar M (1990) Synthesis of 5H-Quinolin[3,4-b][1,4]benzothiazin-6(2H)-ones. Synth Commun 20(7):919–924

    Article  CAS  Google Scholar 

  76. Hodgetts KJ, Kershaw MT (2003) Synthesis of 2-Aryl-oxazolo[4,5-c]quinoline-4(5H)-ones and 2-Aryl-thiazolo[4,5-c]quinoline-4(5H)-ones. Org Lett 5(16):2911–2914

    Article  CAS  PubMed  Google Scholar 

  77. Pierre F, O’Brien SE, Haddach M, Bourbon P, Schwaebe MK, Stefan E, Darjania L, Stansfield R, Ho C, Siddiqui-Jain A (2011) Novel potent pyrimido[4,5-c]quinoline inhibitors of protein kinase CK2: SAR and preliminary assessment of their analgesic and anti-viral properties. Bioorg Med Chem Lett 21(6):1687–1691

    Article  CAS  PubMed  Google Scholar 

  78. Sankaran M, Kumarasamy C, Chokkalingam U, Mohan PS (2010) Synthesis, antioxidant and toxicological study of novel pyrimido quinoline derivatives from 4-hydroxy-3-acyl quinolin-2-one. Bioorg Med Chem Lett 20(23):7147–7151

    Article  CAS  PubMed  Google Scholar 

  79. Gewald K, Schefer H, Bellmann P, Mueller H (1991) 4-Amino-3-pyridinochinolin- 2(1H)-one und 3,4-Diaminochinolin-2(1H)-one. Chem Ber 124:1237–1241

    Article  CAS  Google Scholar 

  80. Hamama WS, Hassanien AE, El-Fedawy MG, Zoorob HH (2015) Synthesis and antimicrobial evaluation of novel polyfused heterocycles based quinolone. J Heterocycl Chem 52(2):492–496

    Article  CAS  Google Scholar 

  81. Cincinelli R, Musso L, Beretta G, Dallavalle S (2014) 4-Quinolone fused heterocyclic ring systems by intramolecular reactions of 4-quinolone-2-carboxamides. Tetrahedron 70(52):9797–9804

    Article  CAS  Google Scholar 

  82. Gao C, Fan Y-L, Zhao F, Ren Q-C, Wu X, Chang L, Gao F (2018) Quinolone derivatives and their activities against methicillin-resistant Staphylococcus aureus (MRSA). Eur J Med Chem 157:1081–1095

    Article  CAS  PubMed  Google Scholar 

  83. Gao F, Wang P, Yang H, Miao Q, Ma L, Lu G (2018) Recent developments of quinolone-based derivatives and their activities against Escherichia coli. Eur J Med Chem 157:1223–1248

    Article  CAS  PubMed  Google Scholar 

  84. Hu Y-Q, Zhang S, Xu Z, Lv Z-S, Liu M-L, Feng L-S (2017) 4-Quinolone hybrids and their antibacterial activities. Eur J Med Chem 141:335–345

    Article  CAS  PubMed  Google Scholar 

  85. Zhang G-F, Liu X, Zhang S, Pan B, Liu M-L (2018) Ciprofloxacin derivatives and their antibacterial activities. Eur J Med Chem 146:599–612

    Article  CAS  PubMed  Google Scholar 

  86. Sharma PC, Jain A, Jain S (2009) Fluoroquinolone antibacterials: a review on chemistry, microbiology and therapeutic prospects. Acta Pol Pharm 66(6):587–604

    CAS  PubMed  Google Scholar 

  87. Danaei, G.; Vander Hoorn, S.; Lopez, A. D.; Murray, C. J.; Ezzati, M.; group, C. R. A. C. Causes of cancer in the world: comparative risk assessment of nine behavioural and environmental risk factors. The Lancet. 2005, 366(9499),1784–1793.

  88. Ea S, Giacometti S, Ciccolini J, Akhmedjanova V, Aubert C (2008) Cytotoxic effects of haplamine and its major metabolites on human cancer cell lines. Planta Med 74(10):1265–1268

    Article  CAS  PubMed  Google Scholar 

  89. Kumar NP, Thatikonda S, Tokala R, Kumari SS, Lakshmi UJ, Godugu C, Shankaraiah N, Kamal A (2018) Sulfamic acid promoted one-pot synthesis of phenanthrene fused-dihydrodibenzo-quinolinones: Anticancer activity, tubulin polymerization inhibition and apoptosis inducing studies. Bioorg Med chem 26(8):1996–2008

    Article  CAS  PubMed  Google Scholar 

  90. Banerji B, Killi SK, Katarkar A, Chatterjee S, Tangella Y, Prodhan C, Chaudhuri K (2017) Neo-tanshinlactone D-ring modified novel analogues induce apoptosis in human breast cancer cell via DNA damage. Biorg Med Chem 25(1):202–212

    Article  CAS  Google Scholar 

  91. Hamama WS, Hassanien AE, El-Fedawy MG, Zoorob HH (2016) Synthesis, PM3-Semiempirical, and Biological Evaluation of Pyrazolo[4,3-c]quinolinones. J Heterocycl Chem 53(3):945–952

    Article  CAS  Google Scholar 

  92. Palluotto F, Sosic A, Pinato O, Zoidis G, Catto M, Sissi C, Gatto B, Carotti A (2016) Quinolino[3,4-b]quinoxalines and pyridazino[4,3-c]quinoline derivatives: Synthesis, inhibition of topoisomerase IIα, G-quadruplex binding and cytotoxic properties. Eur J Med Chem 123:704–717

    Article  CAS  PubMed  Google Scholar 

  93. Hassanin HM, Abd Elmoneam WR, Mostafa MA (2019) Synthesis and antitumor activity evaluation of different 2,5-dialkyloxazolopyrano[3,2-c]quinolinone derivatives. Med Chem Res 28(1):28–38

    Article  CAS  Google Scholar 

  94. Aleksić, M.; Bertoša, B.; Nhili, R.; Uzelac, L.; Jarak, I.; Depauw, S.; David-Cordonnier, M.-H. l. n.; Kralj, M.; Tomić, S.; Karminski-Zamola, G. Novel substituted benzothiophene and thienothiophene carboxanilides and quinolones: synthesis, photochemical synthesis, DNA-binding properties, antitumor evaluation and 3D-derived QSAR analysis. J. Med. Chem. 2012, 55(11), 5044–5060.

  95. Aleksić M, Bertoša B, Nhili R, Depauw S, Martin-Kleiner I, David-Cordonnier M-H, Tomić S, Kralj M, Karminski-Zamola G (2014) Anilides and quinolones with nitrogen-bearing substituents from benzothiophene and thienothiophene series: synthesis, photochemical synthesis, cytostatic evaluation, 3D-derived QSAR analysis and DNA-binding properties. Eur J Med Chem 71:267–281

    Article  PubMed  CAS  Google Scholar 

  96. Jarak I, Kralj M, Šuman L, Pavlović G, Dogan J, Piantanida I, Žinić M, Pavelić K, Karminski-Zamola G (2005) Novel cyano-and N-isopropylamidino-substituted derivatives of benzo[b]thiophene-2-carboxanilides and benzo[b]thieno[2,3-c]quinolones: synthesis, photochemical synthesis, crystal structure determination, and antitumor evaluation. J Med Chem 48(7):2346–2360

    Article  CAS  PubMed  Google Scholar 

  97. Dogan Koružnjak J, Grdiša M, Slade N, Zamola B, Pavelić K, Karminski-Zamola G (2003) Novel derivatives of benzo[b]thieno[2,3-c]quinolones: synthesis, photochemical synthesis, and antitumor evaluation. J Med Chem 46(21):4516–4524

    Article  PubMed  CAS  Google Scholar 

  98. Lipunova G, Nosova É, Sidorova L, Charushin V (2011) Synthesis and antitumor activity of fluorinated derivatives of [i, j]-annelated quinolones. Pharm Chem J 45(4):208–210

    Article  CAS  Google Scholar 

  99. Li H, Han X, Li D (2017) Synthesis and anti-tumor activity of levofloxacin-thiadiazole histone deacetylase inhibitor conjugates. Acta Pharm Sin 52:582–591

    Google Scholar 

  100. Chu D, Hallas R, Clement J, Alder J, McDonald E, Plattner J (1992) Synthesis and antitumour activities of quinolone antineoplastic agents. Drugs Exp Clin Res 18(7):275–282

    CAS  PubMed  Google Scholar 

  101. Barbieriková Z, Bella M, Sekeráková Ľ, Lietava J, Bobeničová M, Dvoranová D, Milata V, Sádecká J, Topoľská D, Heizer T (2013) Spectroscopic characterization, photoinduced processes and cytotoxic properties of substituted N-ethyl selenadiazoloquinolones. J Phys Org Chem 26(7):565–574

    Article  CAS  Google Scholar 

  102. Jantová S, Paulovičová E, Paulovičová L, Topoľská D, Pánik M, Milata V (2017) Assessment of Immunomodulatory Activities and in vitro Toxicity of New Quinolone 7-ethyl 9-ethyl-6-oxo-6,9-dihydro[1,2,5]selenadiazolo[3,4-h]quinoline-7-carboxylate. Immunol Invest 46(4):341–360

    Article  PubMed  CAS  Google Scholar 

  103. Jantová S, Topoľská D, Janošková M, Pánik M, Milata V (2016) Study of the cytotoxic/toxic potential of the novel anticancer selenodiazoloquinolone on fibroblast cells and 3D skin model. Interdiscip Toxicol 9(3–4):106–112

    Article  PubMed  CAS  Google Scholar 

  104. Ferlin MG, Chiarelotto G, Gasparotto V, Dalla Via L, Pezzi V, Barzon L, Palù G, Castagliuolo I (2005) Synthesis and in vitro and in vivo antitumor activity of 2-phenylpyrroloquinolin-4-ones. J Med Chem 48(9):3417–3427

    Article  CAS  PubMed  Google Scholar 

  105. Dhiman P, Arora N, Veeraveedu Thanikachalam P, Monga V (2019) Recent advances in the synthetic and medicinal perspective of quinolones: A review. Bioorg Chem 92:103291–103335

    Article  CAS  PubMed  Google Scholar 

  106. Jain S, Chandra V, Kumar Jain P, Pathak K, Pathak D, Vaidya A (2019) Compre-hensive review on current developments of quinoline-based anticancer agents. Arab J Chem 12(8):4920–4946

    Article  CAS  Google Scholar 

  107. Bisacchi GS (2015) Origins of the quinolone class of antibacterials: an expanded “discovery story” miniperspective. J Med Chem 58(12):4874–4882

    Article  CAS  PubMed  Google Scholar 

  108. Patel MN, Gandhi DS, Parmar PA (2012) DNA interaction and in-vitro antibacterial studies of fluoroquinolone based platinum (II) complexes. Inorg Chem Commun 15:248–251

    Article  CAS  Google Scholar 

  109. Wang M-L, Chen S-C, Kuo S-C (1999) Sodium borohydride and hydrogen peroxide as fluorogenic spray reagents for the detection of nalidixic acid and flumequine. J Liq Chromatogr Relat Technol 22(5):771–775

    Article  CAS  Google Scholar 

  110. Sidhu GS, Go A, Attar BM, Mutneja HR, Arora S, Patel SA (2017) Rifaximin versus norfloxacin for prevention of spontaneous bacterial peritonitis: a systematic review. BMJ open gastroenterol 4(1):154–160

    Article  Google Scholar 

  111. Wagman AS, Cirz R, McEnroe G, Aggen J, Linsell MS, Goldblum AA, Lopez S, Gomez M, Miller G, Simons LJ (2017) Synthesis and microbiological evaluation of novel tetracyclic fluoroquinolones. Chem Med Chem 12(20):1687–1692

    Article  CAS  PubMed  Google Scholar 

  112. Ball, P. Quinolone generations: natural history or natural selection. J. Antimicrob. Chemother. 2000, 46(suppl_3), 17–24.

  113. Al-Qawasmeh RA, Abadleh MM, Zahra JA, El-Abadelah MM, Albashiti R, Zani F, Incerti M, Vicini P (2014) Design synthesis and antibacterial activity studies of new thiadiazoloquinolone compounds. J Enzyme Inhib Med Chem 29(6):777–785

    Article  CAS  PubMed  Google Scholar 

  114. Abdullah MA, Abuo-Rahma GE-DA, Abdelhafez E-SM, Hassan HA, Abd El-Baky RM (2017) Design, synthesis, molecular docking, anti-Proteus mirabilis and urease inhibition of new fluoroquinolone carboxylic acid derivatives. Biorg Chem 70:1–11

    Article  CAS  Google Scholar 

  115. Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL (2007) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discovery 6(1):29–40

    Article  CAS  PubMed  Google Scholar 

  116. Mitscher LA (2005) Bacterial topoisomerase inhibitors: quinolone and pyridone antibacterial agents. Chem Rev 105(2):559–592

    Article  CAS  PubMed  Google Scholar 

  117. Mehlhorn AJ, Brown DA (2007) Infectious Diseases: Safety Concerns with Fluoroquinolones. Ann Pharm 41(11):1859–1866

    Google Scholar 

  118. Rice LB (2009) The clinical consequences of antimicrobial resistance. Curr Opin Microbiol 12(5):476–481

    Article  CAS  PubMed  Google Scholar 

  119. Hooper, D. C.; Jacoby, G. A. Mechanisms of drug resistance: quinolone resistance. Ann. N.Y. Acad. Sci. 2015, 1354(1), 12–31.

  120. Wohlkonig A, Chan PF, Fosberry AP, Homes P, Huang J, Kranz M, Leydon VR, Miles TJ, Pearson ND, Perera RL (2010) Structural basis of quinolone inhibition of type IIA topoisomerases and target-mediated resistance. Nat Struc Molec Biol 17(9):1152–1153

    Article  CAS  Google Scholar 

  121. Lewis T, Cook J (2014) Fluoroquinolones and tendinopathy: a guide for athletes and sports clinicians and a systematic review of the literature. J Athl Train 49(3):422–427

    Article  PubMed  PubMed Central  Google Scholar 

  122. Miles TJ, Hennessy AJ, Bax B, Brooks G, Brown BS, Brown P, Cailleau N, Chen D, Dabbs S, Davies DT (2016) Novel tricyclics (eg, GSK945237) as potent inhibitors of bacterial type IIA topoisomerases. Bioorg Med Chem Lett 26(10):2464–2469

    Article  CAS  PubMed  Google Scholar 

  123. Andrews J, Ashby J, Jevons G, Wise R (1999) Tentative minimum inhibitory concentration and zone diameter breakpoints for moxifloxacin using BSAC criteria. J Antimicrob Chemother 44(6):819–822

    Article  CAS  PubMed  Google Scholar 

  124. Kim HY, Wiles JA, Wang Q, Pais GC, Lucien E, Hashimoto A, Nelson DM, Thanassi JA, Podos SD, Deshpande M (2011) Exploration of the activity of 7-pyrrolidino-8-methoxyisothiazoloquinolones against methicillin-resistant Staphylo-coccus aureus (MRSA). J Med Chem 54(9):3268–3282

    Article  CAS  PubMed  Google Scholar 

  125. Cecchetti V, Cruciani G, Filipponi E, Fravolini A, Tabarrini O, **n T (1997) Synthesis and antibacterial evaluation of [1,3]benzothiazino[3,2-a]quinoline-and [3,1]benzothiazino[1,2-a]quinoline-6-carboxylic acid derivatives. Biorg Med Chem 5(7):1339–1344

    Article  CAS  Google Scholar 

  126. Patel NB, Pathak KK (2012) Pyridoquinolones containing azetidinones: synthesis and their biological evaluation. Med Chem Res 21(8):2044–2055

    Article  CAS  Google Scholar 

  127. Shiro T, Takahashi H, Kakiguchi K, Inoue Y, Masuda K, Nagata H, Tobe M (2012) Synthesis and SAR study of imidazoquinolines as a novel structural class of microsomal prostaglandin E2 synthase-1 inhibitors. Biorg Med Chem Lett 22(1):285–288

    Article  CAS  Google Scholar 

  128. Shiro T, Kakiguchi K, Takahashi H, Nagata H, Tobe M (2013) 7-Phenyl-imidazoquinolin-4(5H)-one derivatives as selective and orally available mPGES-1 inhibitors. Biorg Med Chem 21(11):2868–2878

    Article  CAS  Google Scholar 

  129. Knudsen LB (2004) Glucagon-like peptide-1: the basis of a new class of treatment for type 2 diabetes. J Med Chem 47(17):4128–4134

    Article  CAS  PubMed  Google Scholar 

  130. Pospisilik JA, Martin J, Doty T, Ehses JA, Pamir N, Lynn FC, Piteau S, Demuth H-U, McIntosh CH, Pederson RA (2003) Dipeptidyl peptidase IV inhibitor treatment stimulates β-cell survival and islet neogenesis in streptozotocin-induced diabetic rats. Diabetes 52(3):741–750

    Article  CAS  PubMed  Google Scholar 

  131. Reimer MK, Holst JJ, Ahrén B (2002) Long-term inhibition of dipeptidyl peptidase IV improves glucose tolerance and preserves islet function in mice. Eur J Endocr 146(5):717–727

    Article  CAS  Google Scholar 

  132. Ikuma Y, Hochigai H, Kimura H, Nunami N, Kobayashi T, Uchiyama K, Furuta Y, Sakai M, Horiguchi M, Masui Y (2012) Discovery of 3H-imidazo[4,5-c]quinolin-4(5H)-ones as potent and selective dipeptidyl peptidase IV (DPP-4) inhibitors. Biorg Med Chem 20(19):5864–5883

    Article  CAS  Google Scholar 

  133. Menniti FS, Faraci WS, Schmidt CJ (2006) Phosphodiesterases in the CNS: targets for drug development. Nat Rev Drug Discovery 5(8):660–670

    Article  CAS  PubMed  Google Scholar 

  134. Maurice DH, Ke H, Ahmad F, Wang Y, Chung J, Manganiello VC (2014) Advances in targeting cyclic nucleotide phosphodiesterases. Nat Rev Drug Discovery 13(4):290–314

    Article  CAS  PubMed  Google Scholar 

  135. Andreeva SG, Dikkes P, Epstein PM, Rosenberg PA (2001) Expression of cGMP-specific phosphodiesterase 9A mRNA in the rat brain. J Neurosci 21(22):9068–9076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lu Y-F, Kandel ER, Hawkins RD (1999) Nitric oxide signaling contributes to late-phase LTP and CREB phosphorylation in the hippocampus. J Neurosci 19(23):10250–10261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. van der Staay FJ, Rutten K, Bärfacker L, DeVry J, Erb C, Heckroth H, Karthaus D, Tersteegen A, van Kampen M, Blokland A (2008) The novel selective PDE9 inhibitor BAY 73–6691 improves learning and memory in rodents. Neuropharmacology 55(5):908–918

    Article  PubMed  CAS  Google Scholar 

  138. Shiro T, Fukaya T, Tobe M (2015) The chemistry and biological activity of heterocycle-fused quinolinone derivatives: A review. Eur J Med Chem 97:397–408

    Article  CAS  PubMed  Google Scholar 

  139. Yokoyama N, Ritter B, Neubert AD (1982) 2-Arylpyrazolo[4,3-c]quinolin-3-ones: A novel agonist, a partial agonist and an antagonist of benzodiazepines. J Med Chem 25(4):337–339

    Article  CAS  PubMed  Google Scholar 

  140. Cecchi L, Melani F, Palazzino G, Filacchioni G, Martini C, Pennacchi E, Lucacchini A (1985) Synthesis and binding studies of 1-arylpyrazolo[4,5-c]-and 2-arylpyrazolo[4,3-c]quinolin-4-ones. I Il Farmaco Sci 40(7):509–516

    CAS  Google Scholar 

  141. Melani, F.; Cecchi, L.; Palazzino, G.; Filacchioni, G.; Martini, C.; Pennacchi, E.; Lucacchini, A. Pyrazolo[4,5-c]quinolines. 3. Synthesis, receptor binding, and 13C NMR study. J. Pharm. Sci. 1986, 75(12), 1175–1179.

  142. Gupta S, Saha R, Gupta J, Singh P (1989) A quantitative structure-activity relationship study on some pyrazolo[4,5-c]quinolines acting as inhibitors of benzodiazepine-receptor binding. Res Commun Chem Pathol Pharmacol 65(1):119–122

    CAS  PubMed  Google Scholar 

  143. Watkins JC, Korgsgaard-Larsen P, Honoré T (1990) Structure-activity relationships in the development of excitatory ammo acid receptor agonists and competitive antagonists. Trends Pharmacol Sci 11(1):25–33

    Article  CAS  PubMed  Google Scholar 

  144. Wong E, Kemp JA, Priestley T, Knight AR, Woodruff GN, Iversen LL (1986) The anticonvulsant MK-801 is a potent N-methyl-D-aspartate antagonist. Proc Nat Acad Sci 83(18):7104–7108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Kemp JA, Leeson PD (1993) The glycine site of the NMDA receptor—five years on. Trends Pharmacol Sci 14(1):20–25

    Article  CAS  PubMed  Google Scholar 

  146. MacLeod AM, Grimwood S, Barton C, Bristow L, Saywell KL, Marshall GR, Ball RG (1995) Identification of 3,5-dihydro-2-aryl-1H-pyrazolo[3,4-c]quinoline-1,4(2H)-diones as novel high-affinity glycine site N-methyl-D-aspartate antagonists. J Med Chem 38(12):2239–2243

    Article  CAS  PubMed  Google Scholar 

  147. Ukrainets, I.; Golik, N. Y.; Andreeva, K.; Gorokhova, O. 4-Hydroxy-2-quinolones. 194*. 1-Hydroxy-3-oxo-6,7-dihydro-3H,5H-pyrido[3,2,1-ij]quinoline-2-carboxylic acid alkylamides. Synthesis, structure, and biological properties. Chem. Heterocycl. Compoud. 2011, 46(12), 1459.

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Ashraf A Aly contributed to conceptualization, writing, revising and submission; Mohamed Abd El-Aziz performed visualization; Hazem M. Fathy wrote the manuscript; Alan B. Brown revised the manuscript; Yaseen AMM Elshaier performed visualization; Mohamed Ramadan wrote and revised the manuscript.

Corresponding author

Correspondence to Ashraf A. Aly.

Ethics declarations

Conflicts of Interest

The authors declare no conflict of interest. The authors declare that they have no known competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elshaier, Y.A.M.M., Aly, A.A., El-Aziz, M.A. et al. A review on the synthesis of heteroannulated quinolones and their biological activities. Mol Divers 26, 2341–2370 (2022). https://doi.org/10.1007/s11030-021-10332-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-021-10332-1

Keywords

Navigation