Log in

RNA polymerase III transcription machinery: Structure and transcription regulation

  • Reviews
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

RNA polymerase (Pol) III is a complex multisubunit enzyme that transcribes genes for small stable untranslated RNAs (tRNAs, 5S rRNA, Alu RNA, U6 snRNA) and some other genes (class III genes). Of all eukaryotic Pols, Pol III is the most poorly studied. Recent attention to Pol III is explained by new data on the important role of its RNA products in cell growth, proliferation, and differentiation. The contents of these RNA products depend on the growth rate, the cell-cycle phase, and the physiological state of the cell (slow or active proliferation or apoptosis) and change upon malignant transformation, viral infection, and heat shock. This review considers the structures and functions of Pol III, its basal transcription factors, and the holoenzyme; assembly of the preinitiation complex; and the transcription cycle. In addition, transcriptional regulation of class III genes is described as dependent on the cell cycle phase, growth factors, cell growth rate, transformation, and apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Schramm L., Hernandez N. 2002. Recruitment of RNA polymerase III to its target promoters. Genes Dev. 16, 2593–2620.

    Article  CAS  PubMed  Google Scholar 

  2. Kim D.D.Y., Kim T.T.Y., Walsh T., Kobayashi Y., Matise T.C., Buyske S., Gabriel A. 2004. Widespread RNA editing of embedded Alu elements in the human transcriptome. Genome Res. 14, 1719–1725.

    Article  CAS  PubMed  Google Scholar 

  3. Buzdin A.A. 2004. Retroelements and formation of chimeric retrogenes. Cell. Mol. Life Sci. 61, 2046–2059.

    Article  CAS  PubMed  Google Scholar 

  4. Donze D., Kamakaka R.T. 2001. RNA polymerase III and RNA polymerase II promoter complexes are heterochromatin barriers in Saccharomyces cerevisiae. EMBO J. 20, 520–531.

    Article  CAS  PubMed  Google Scholar 

  5. Huang W., Flint S.J. 2003. Unusual properties of adenovirus E2E transcription by RNA polymerase III. J. Virol. 77, 4015–4024.

    Article  CAS  PubMed  Google Scholar 

  6. Rubin C.M., Kimura R.H., Schmid C.W. 2002. Selective stimulation of translational expression by Alu RNA. Nucleic Acids Res. 30, 3253–3261.

    Article  CAS  PubMed  Google Scholar 

  7. Espinoza C.A., Allen T.A., Hieb A.R., Kugel J.F., Goodrich J.A. 2004. B2 RNA binds directly to RNA polymerase II to repress transcript synthesis. Nature Struct. Mol. Biol. 11, 822–829.

    Article  CAS  Google Scholar 

  8. Flores A., Briand J.-F., Gadal O., Andrau J.-C., Rubbi L., van Mullem V., Boschiero C., Goussot M., Marck C., Carles C., Thuriaux P., Sentenac A., Werner M. 1999. A protein-protein interaction map of yeast RNA polymerase III. Proc. Natl. Acad. Sci. USA. 96, 7815–7820.

    Article  CAS  PubMed  Google Scholar 

  9. Geiduschec E.P., Kassavetis G.A. 2001. The RNA polymerase III transcription apparatus. J. Mol. Biol. 310, 1–26.

    Article  PubMed  Google Scholar 

  10. Rozenfeld S., Thuriaux P. 2001. A genetic look at the active site of RNA polymerase III. EMBO Repts. 2, 598–603.

    Article  CAS  Google Scholar 

  11. Ferri M.L., Peyroche G., Siaut M., Lefebvre O., Carles C., Conesa C., Sentenac A. 2000. A novel subunit of yeast RNA polymerase III interacts with the TFIIB-related domain of TFIIIB70. Mol. Cell Biol. 20, 488–495.

    Article  CAS  PubMed  Google Scholar 

  12. Chedin S., Riva M., Schultz P., Sentenac A., Carles C. 1998. The RNA cleavage activity of RNA polymerase III is mediated by an essential TFIIS-like subunit and is important for transcription termination. Genes Dev. 12, 3857–3871.

    CAS  PubMed  Google Scholar 

  13. Tan Q., Prysak M.H., Woychik N.A. 2003. Loss of the Rpb4/Rpb7 subcomplex in a mutant form of the Rpb6 subunit shared by RNA polymerases I, II, and III. Mol. Cell. Biol. 23, 3329–3338.

    Article  CAS  PubMed  Google Scholar 

  14. Dumay H., Rubbi L., Sentenac A., Marck C. 1999. Interaction between yeast RNA polymerase III and transcription factor TFIIIC via ABC10alpha and tau131 subunits. J. Biol. Chem. 274, 33462–33468.

    Article  CAS  PubMed  Google Scholar 

  15. Andrau J.C., Sentenac A., Werner M. 1999. Mutagenesis of yeast TFIIIB70 reveals C-terminal residues critical for interaction with TBP and C34. J. Mol. Biol. 288, 511–520.

    Article  CAS  PubMed  Google Scholar 

  16. Hu P., Wu S., Sun Y., Yuan C.C., Kobayashi R., Myers M.P., Hernandez N. 2002. Characterization of human RNA polymerase III identifies orthologues for Saccharomyces cerevisiea RNA polymerase III subunits. Mol. Cell. Biol. 22, 8044–8055.

    Article  CAS  PubMed  Google Scholar 

  17. Siaut M., Zaros C., Levivier E., Ferri M.L., Court M., Werner M., Callebaut I., Thuriaux P., Sentenac A., Conesa C. 2003. An Rpb4/Rpb7-like complex in yeast RNA polymerase III contains the orthologue of mammalian CGRP-RCP. Mol. Cell. Biol. 23, 195–205.

    Article  CAS  PubMed  Google Scholar 

  18. Paule M.R., White R.J. 2000. Transcription by RNA polymerases I and III. Nucleic Acids Res. 28, 1283–1298.

    Article  CAS  PubMed  Google Scholar 

  19. Huang Y., Maraia R.J. 2001. Comparison of the RNA polymerase III transcription machinery in Schizosaccharomyces pombe, Saccharomyces cerevisiae and human. Nucleic Acids Res. 29, 2675–2690.

    Article  CAS  PubMed  Google Scholar 

  20. Trivedi A., Young L.S., Ouyang C., Johnson D.L., Sprague K.U. 1999. A TATA element is required for tRNA promoter activity and confers TATA-binding protein responsiveness in Drosophila Schneider-2 cells. J. Biol. Chem. 274, 11369–11375.

    Article  CAS  PubMed  Google Scholar 

  21. Smale S.T., Kadonaga J.T. 2003. The RNA polymerase II core promoter. Annu. Rev. Biochem. 72, 449–479.

    Article  CAS  PubMed  Google Scholar 

  22. Grove A., Kassavetis G.A., Johnson T.E., Geiduschek E.P. 1999. The RNA polymerase III-recruiting factor TFIIIB induces a DNA bend between the TATA box and the transcriptional start site. J. Mol. Biol. 285, 1429–1440.

    Article  CAS  PubMed  Google Scholar 

  23. Schramm L., Pendergrast P.S., Sun Y., Hernandez N. 2000. Different human TFIIIB activities direct RNA polymerase III transcription from TATA-containing and TATA-less promoters. Genes Dev. 14, 2650–2663.

    Article  CAS  PubMed  Google Scholar 

  24. Teichmann M., Wang Z., Roeder R.G. 2000. A stable complex of a novel transcription factor IIB-related factor, human TFIIIB50, and associated proteins mediate selective transcription by RNA polymerase III of genes with upstream promoter elements. Proc. Natl. Acad. Sci. USA. 97, 14200–14205.

    Article  CAS  PubMed  Google Scholar 

  25. Takada S., Lis J.T., Zhou S., Tjian R. 2000. A TRF1:BRF complex directs Drosophila RNA polymerase III transcription. Cell. 101, 459–469.

    Article  CAS  PubMed  Google Scholar 

  26. Tupler R., Perini G., Green M.R. 2001. Expressing the human genome. Nature. 409, 832–833.

    Article  CAS  PubMed  Google Scholar 

  27. McCulloch V., Hardin P., Peng W., Ruppert J.M., Lobo-Ruppert S.M. 2000. Alternatively spliced hBRF variants function at different RNA polymerase III promoters. EMBO J. 19, 4134–4143.

    Article  CAS  PubMed  Google Scholar 

  28. Weser S., Gruber C., Hafner H.M., Teichmann M., Roeder R.G., Seifart K.H., Meissner W. 2004. Transcription factor (TF)-like nucleic regulator, the 250-kDa form of Homo sapiens TFIIIB’, an essential component of human TFIIIC1 activity. J. Biol. Chem. 279, 27022–27029.

    Article  CAS  PubMed  Google Scholar 

  29. Kundu T.K., Wang Z., Roeder R.G. 1999. Human TFIIIC relieves chromatin-mediated repression of RNA polymerase III transcription and contains an intrinsic histone acetyltransferase activity. Mol. Cell. Biol. 19, 1605–1615.

    CAS  PubMed  Google Scholar 

  30. Kruppa M., Moir R.D., Kolodrubetz D., Willis I.M. 2001. Nhp6, an HMG1 protein, functions in SNR6 transcription by RNA polymerase III in S. cerevisiae. Mol. Cell. 7, 309–318.

    Article  CAS  PubMed  Google Scholar 

  31. Lopez S., Livingstone-Zatchej M., Jourdain S., Thoma F., Sentenac A., Marsolier M.C. 2001. High-mobility-group proteins NHP6A and NHP6B participate in activation of the RNA polymerase III SNR6 gene. Mol. Cell. Biol. 21, 3096–3104.

    Article  CAS  PubMed  Google Scholar 

  32. Wang Z., Bai L., Hsieh Y.J., Roeder R.G. 2000. Nuclear factor 1 (NF1) affects accurate termination and multiple-round transcription by human RNA polymerase III. EMBO J. 19, 6823–6832.

    Article  CAS  PubMed  Google Scholar 

  33. Hu P., Wu S., Hernandez N. 2003. A minimal RNA polymerase III transcription system from human cells reveals positive and negative regulatory roles for CK2. Mol. Cell. 12, 699–709.

    Article  CAS  PubMed  Google Scholar 

  34. Nikitina T.V., Tishchenko L.I., Sedova V.M. 2002. RNA polymerase III holoenzyme phosphorylation-dephosphorylation: Modifications regulating the level of in vitro transcription. Tsitologiya. 44, 277–284.

    CAS  Google Scholar 

  35. Guffanti E., Corradini R., Ottonello S., Dieci G. 2004. Functional dissection of RNA polymerase III termination using a peptide nucleic acid as a transcriptional roadblock. J. Biol. Chem. 279, 20708–20716.

    Article  CAS  PubMed  Google Scholar 

  36. Hamada M., Sakulich A.L., Koduru S.B., Maraia R.J. 2000. Transcription termination by RNA polymerase III in fission yeast. J. Biol. Chem. 275, 29076–29081.

    Article  CAS  PubMed  Google Scholar 

  37. Bobkova E.V., Habib N., Alexander G., Hall B.D. 1999. Mutational analysis of the hydrolytic activity of yeast RNA polymerase III. J. Biol. Chem. 274, 21342–21348.

    CAS  PubMed  Google Scholar 

  38. Cloutier T.E., Librizzi M.D., Mollah A.K.M.M., Brenowitz M., Willis I.M. 2001. Kinetic trap** of DNA by transcription factor IIIB. Proc. Natl. Acad. Sci. USA. 98, 9581–9586.

    CAS  PubMed  Google Scholar 

  39. Maraia R.J. 2001. La protein and the trafficking of nascent RNA polymerase III transcripts. J. Cell Biol. 153, F13–F17.

    CAS  PubMed  Google Scholar 

  40. Brown T.R., Scott P.H., Stein T., Winter A.G., White R.J. 2000. RNA polymerase III transcription: Its control by tumor suppressors and its deregulation by transforming agents. Gene Expr. 9, 15–28.

    CAS  PubMed  Google Scholar 

  41. Felton-Edkins Z.A., Kenneth N.S., Brown T.R., Daly N.L., Gomez-Roman N., Grandori C., Eisenman R.N., White R.J. 2003. Direct regulation of RNA polymerase III transcription by RB, p53 and c-Myc. Cell Cycle. 2, 181–184.

    CAS  PubMed  Google Scholar 

  42. Warner J.R. 1999. The economics of ribosome biosynthesis in yeast. Trends Biol. Sci. 24, 437–440.

    CAS  Google Scholar 

  43. Studitsky V.M., Walter W., Kireeva M., Kashlev M., Felsenfeld G. 2004. Chromatin remodelling by RNA polymerases. Trends Biochem. Sci. 29, 127–135.

    CAS  PubMed  Google Scholar 

  44. Zhao X., Pendergrast P.S., Hernandez N. 2001. A positioned nucleosome on the human U6 promoter allows recruitment of SNAPc by the Oct-1 POU domain. Mol. Cell. 7, 539–549.

    CAS  PubMed  Google Scholar 

  45. Shivaswamy S., Kassavetis G.A., Bhargava P. 2004. High-level activation of transcription of the yeast U6 snRNA gene in chromatin by the basal RNA polymerase III transcription factor TFIIIC. Mol. Cell. Biol. 24, 3596–3606.

    CAS  PubMed  Google Scholar 

  46. Fairley J.A., Scott P.H., White R.J. 2003. TFIIIB is phosphorylated, disrupted and selectively released from tRNA promoters during mitosis in vivo. EMBO J. 22, 5841–5850.

    CAS  PubMed  Google Scholar 

  47. Westmark C.J., Ghose R., Huber P.W. 1998. Inhibition of RNA polymerase III transcription by a ribosome-associated kinase activity. Nucleic Acids Res. 26, 4758–4764.

    CAS  PubMed  Google Scholar 

  48. Scott P.H., Cairns C.A., Sutcliffe J.E., Alzuherri H.M., McLees A., Winter A.G., White R.J. 2001. Regulation of RNA polymerase III transcription during cell cycle entry. J. Biol. Chem. 276, 1005–1014.

    CAS  PubMed  Google Scholar 

  49. Hirsch H.A., Jawdekar G.W., Lee K.-A., Gu L., Henry R.W. 2004. Distinct mechanisms for repression of RNA polymerase III transcription by the retinoblastoma tumor suppressor protein. Mol. Cell. Biol. 24, 5989–5999.

    CAS  PubMed  Google Scholar 

  50. Stacey D.W. 2003. Cyclin D1 serves as a cell cycle regulatory switch in actively proliferating cells. Curr. Opin. Cell Biol. 15, 158–163.

    CAS  PubMed  Google Scholar 

  51. Meissner W., Thomae R., Seifart K.H. 2002. The activity of transcription factor IIIC1 is impaired during differentiation of F9 cells. J. Biol. Chem. 277, 7148–7156.

    CAS  PubMed  Google Scholar 

  52. Winter A.G., Sourvinos G., Allison S.J., Tosh K., Scott P.H., Spandidos D.A., White R.J. 2000. RNA polymerase III transcription factor TFIIIC2 is overexpressed in ovarian tumors. Proc. Natl. Acad. Sci. USA. 97, 12619–12624.

    CAS  PubMed  Google Scholar 

  53. Larminie C.G., Sutcliffe J.E., Tosh K., Winter A.G., Felton-Edkins Z.A., White R.J. 1999. Activation of RNA polymerase III transcription in cells transformed by simian virus 40. Mol. Cell. Biol. 19, 4927–4934.

    CAS  PubMed  Google Scholar 

  54. Felton-Edkins Z.A., White R.J. 2002. Multiple mechanisms contribute to the activation of RNA polymerase III transcription in cells transformed by papovaviruses. J. Biol. Chem. 277, 48182–48191.

    CAS  PubMed  Google Scholar 

  55. Wang C., Politz J.C., Pederson T., Huang S. 2003. RNA polymerase III transcripts and the PTB protein are essential for the integrity of the perinucleolar compartment. Mol. Biol. Cell. 14, 2425–2435.

    CAS  PubMed  Google Scholar 

  56. White R.J. 2004. RNA polymerase III and cancer. Oncogene. 23, 3208–3216.

    CAS  PubMed  Google Scholar 

  57. Stein T., Crighton D., Boyle J.M., Varley J.M., White R.J. 2002. RNA polymerase III transcription can be derepressed by oncogenes or mutations that compromise p53 function in tumours and Li-Fraumeni syndrome. Oncogene. 21, 2961–2970.

    CAS  PubMed  Google Scholar 

  58. Crighton D., Woiwode A., Zhang C., Mandavia N., Morton J.P., Warnock L.J., Milner J., White R.J, Johnson D.L. 2003. p53 represses RNA polymerase III transcription by targeting TBP and inhibiting promoter occupancy by TFIIIB. EMBO J. 22, 2810–2820.

    CAS  PubMed  Google Scholar 

  59. Eichhorn K., Jackson S.P. 2001. A role for TAF3B2 in the repression of human RNA polymerase III transcription in nonproliferating cells. J. Biol. Chem. 276, 21158–21165.

    CAS  PubMed  Google Scholar 

  60. Gomez-Roman N., Grandori C., Eisenman R.N., White R.J. 2003. Direct activation of RNA polymerase III transcription by c-Myc. Nature. 421, 290–294.

    CAS  PubMed  Google Scholar 

  61. Schuhmacher M., Staege M.S., Pajic A., Polack A., Weidle U.H., Bornkamm G.W., Eick D., Kohlhuber F. 1999. Control of cell growth by c-Myc in the absence of cell division. Curr. Biol. 9, 1255–1258.

    CAS  PubMed  Google Scholar 

  62. Pluta K., Lefebvre O., Martin N.C., Smagowicz W.J., Stanford D.R., Ellis S.R., Hopper A.K., Sentenac A., Boguta M. 2001. Maf1p, a negative effector of RNA polymerase III in Saccharomyces cerevisiae. Mol. Cell. Biol. 21, 5031–5040.

    CAS  PubMed  Google Scholar 

  63. Upadhya R., Lee J., Willis I.M. 2002. Maf1 is an essential mediator of diverse signals that repress RNA polymerase III transcription. Mol. Cell. 10, 1489–1494.

    CAS  PubMed  Google Scholar 

  64. Kwapisz M., Smagowicz W.J., Oficjalska D., Hatin I., Rousset J.-P., Zoladek T., Boguta M. 2002. Up-regulation of tRNA biosynthesis affects translational readthrough in maf1-Δ mutant of Saccharomyces cerevisiae. Curr. Genet. 42, 147–152.

    CAS  PubMed  Google Scholar 

  65. Zhong S., Zhang C., Johnson D.L. 2004. Epidermal growth factor enhances cellular TATA binding protein levels and induces RNA polymerase I-and III-dependent gene activity. Mol. Cell. Biol. 24, 5119–5129.

    CAS  PubMed  Google Scholar 

  66. Ghavidel A., Hockman D.J., Schultz M.C. 1999. A review of progress towards elucidating the role of protein kinase CK2 in polymerase III transcription: Regulation of the TATA binding protein. Mol. Cell. Biochem. 191, 143–148.

    CAS  PubMed  Google Scholar 

  67. Ghavidel A., Schultz M.C. 2001. TATA binding protein-associated CK2 transduces DNA damage signals to the RNA polymerase III transcriptional machinery. Cell. 106, 575–584.

    CAS  PubMed  Google Scholar 

  68. Johnston I.M., Allison S.J., Morton J.P., Schramm L., Scott P.H., White R.J. 2002. CK2 forms a stable complex with TFIIIB and activates RNA polymerase III transcription in human cells. Mol. Cell. Biol. 22, 3757–3768.

    CAS  PubMed  Google Scholar 

  69. Ahmed K., Gerber D.A., Cochet C. 2002. Joining the cell survival squad: an emerging role for protein kinase CK2. Trends Cell Biol. 12, 226–230.

    CAS  PubMed  Google Scholar 

  70. Kayukawa K., Makino Y., Yogosawa S., Tamura T. 1999. A serine residue in the N-terminal acidic region of rat RPB6, one of the common subunits of RNA polymerases, is exclusively phosphorylated by casein kinase II in vitro. Gene. 234, 139–147.

    CAS  PubMed  Google Scholar 

  71. Westmark C.J., Ghose R., Huber P.W. 2002. Phosphorylation of Xenopus transcription factor IIIA by an oocyte protein kinase CK2. Biochem. J. 362, 375–382.

    CAS  PubMed  Google Scholar 

  72. Felton-Edkins Z.A., Fairley J.A., Graham E.L., Johnston I.M., White R.J., Scott P.H. 2003. The mitogen-activated protein (MAP) kinase ERK induces tRNA synthesis by phosphorylating TFIIIB. EMBO J. 22, 2422–2432.

    CAS  PubMed  Google Scholar 

  73. Powers T., Walter P. 1999. Regulation of ribosome biogenesis by the rapamycin-sensitive TOR-signaling pathway in Saccharomyces cerevisiae. Mol. Biol. Cell. 10, 987–1000.

    CAS  PubMed  Google Scholar 

  74. Schultz M.C. 1999. Target of rapamycin (TOR) signaling coordinates tRNA and 5S rRNA gene transcription with growth rate in yeast. Gene Ther. Mol. Biol. 4, 339–348.

    Google Scholar 

  75. Ory S., Zhou M., Conrads T.P., Veenstra T.D., Morrison D.K. 2003. Protein phosphatase 2A positively regulates Ras signaling by dephosphorylating KSR1 and Raf-1 on critical 14-3-3 binding sites. Curr. Biol. 13, 1356–1364.

    CAS  PubMed  Google Scholar 

  76. Briand J.-F., Navarro F., Gadal O., Thuriaux P. 2001. Cross talk between tRNA and rRNA synthesis in Saccharomyces cerevisiae. Mol. Cell. Biol. 21, 189–195.

    CAS  PubMed  Google Scholar 

  77. Dechampesme A.M., Koroleva O., Leger-Silvestre I., Gas N., Camier S. 1999. Assembly of 5S ribosomal RNA is required at a specific step of the pre-rRNA processing pathway. J. Cell Biol. 145, 1369–1380.

    CAS  PubMed  Google Scholar 

  78. Li Y., Moir R.D., Sethy-Coraci I.K., Warner J.R., Willis I.M. 2000. Repression of ribosome and tRNA synthesis in secretion-defective cells is signaled by a novel branch of the cell integrity pathway. Mol. Cell. Biol. 20, 3843–3851.

    CAS  PubMed  Google Scholar 

  79. Nadano D., Sato T.-A. 2000. Caspase-3-dependent and-independent degradation of 28S ribosomal RNA may be involved in the inhibition of protein synthesis during apoptosis initiated by death receptor engagement. J. Biol. Chem. 275, 13967–13973.

    CAS  PubMed  Google Scholar 

  80. Nikitina T.V., Nazarova N.Y., Aksenov N.D., Tishchenko L.I., Tuohimaa P., Sedova V.M. 2004. Small stable RNA level depends on the physiological state of the cell. Tsitologiya. 46, 437–441.

    CAS  Google Scholar 

  81. Roberts D.N., Stewart A.J., Huff J.T., Cairns B.R. 2003. The RNA polymerase III transcriptome revealed by genome-wide localization and activity-occupancy relations. Proc. Natl. Acad. Sci. USA. 100, 14695–14700.

    CAS  PubMed  Google Scholar 

  82. Moqtaderi Z., Struhl K. 2004. Genome-wide occupancy profile of the RNA polymerase III machinery in Saccharomyces cerevisiae reveals loci with incomplete transcription complexes. Mol. Cell. Biol. 24, 4118–4127.

    CAS  PubMed  Google Scholar 

  83. Williams W.P., Tamburic L., Astell C.R. 2004. Increased levels of B1 and B2 SINE transcripts in mouse fibroblast cells due to minute virus of mice infection. Virology. 327, 233–241.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Molekulyarnaya Biologiya, Vol. 39, No. 2, 2005, pp. 179–192.

Original Russian Text Copyright © 2005 by Nikitina, Tishchenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikitina, T.V., Tishchenko, L.I. RNA polymerase III transcription machinery: Structure and transcription regulation. Mol Biol 39, 161–172 (2005). https://doi.org/10.1007/s11008-005-0024-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11008-005-0024-x

Key words

Navigation