Log in

Damped Oscillatory Integrals and Maximal Operators

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

In the present paper, we consider estimates of the Fourier transform of Borel measures concentrated on analytic hypersurfaces and containing a mitigating factor. The mitigating factors are expressed in terms of principal curvatures of the surface. The resulting estimates are applied to investigating the boundedness of the corresponding maximal operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. M. Stein, “Maximal functions: spherical means,” Proc. Nat. Acad. Sci. USA, 73 (1976), 2174–2175.

    MATH  Google Scholar 

  2. J. Bourgain, “Averages in the plane convex curves and maximal operators,” J. Anal. Math., 47 (1986), 69–85.

    Article  MATH  MathSciNet  Google Scholar 

  3. C. D. Sogge and E. M. Stein, “Averages of functions over hypersurfaces in ℝn,” Invent. Math., 82 (1985), 543–556.

    Article  MathSciNet  MATH  Google Scholar 

  4. E. M. Stein, Harmonic Analysis: Real-Valued Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, 1993.

    MATH  Google Scholar 

  5. A. Greenleaf, “Principal curvature and harmonic analysis,” Indiana Math. J., 30 (1982), 519–537.

    MathSciNet  Google Scholar 

  6. C. D. Sogge, “Averaging operators with one non-vanishing principal curvature,” Fourier Analysand Partial Differential Equations. Stud. Adv. Math., 22 (1995), 317–323.

    MathSciNet  Google Scholar 

  7. M. Cowling and G. Mauceri, “Inequalities for maximal functions, II,” Trans. Amer. Math. Soc., 296 (1986), 341–365.

    MathSciNet  MATH  Google Scholar 

  8. M. Cowling and G. Mauceri, “Oscillatory integrals and Fourier transforms of surface carried measures,” Trans. Amer. Math. Soc., 304 (1987), no. 1, 53–68.

    MathSciNet  MATH  Google Scholar 

  9. A. Iosevich, “Maximal operators associated to families of flat curves in the plane,” Duke Math. J., 76 (1995), 631–644.

    MathSciNet  Google Scholar 

  10. A. Iosevich and E. Sawyer, “Maximal operators over convex hypersurfaces,” Adv. in Math., 132 (1997), no. 1, 46–119.

    Article  MathSciNet  MATH  Google Scholar 

  11. V. I. Arnol'd, A. N. Varchenko, and S. M. Gusein-zade, Singularities of Differentiable Map**s, pt. 1 Classification of Critical Points of Caustics and Wavefronts [in Russian], Nauka, Moscow, 1982.

    Google Scholar 

  12. A. N. Varchenko, “Newton polyhedra and estimates of oscillatory integrals,” Funktsional. Anal. i Prilozhen. [Functional Anal. Appl.], 10 (1976), no. 3, 13–38.

    MATH  Google Scholar 

  13. V. N. Karpushkin, “A theorem on uniform estimates for oscillatory integrals with a phase depending on two variables,” Trudy-Sem.-Petrovsk, 10 (1984), 150–169.

    MATH  MathSciNet  Google Scholar 

  14. M. Cowling, S. Disney, and G. Mauceri, and D. Muller, “Dam** oscillatory integrals,” Invent. Math., 101 (1990), 237–260.

    Article  MathSciNet  MATH  Google Scholar 

  15. I. A. Ikromov, “Damped oscillatory integrals and boundedness problem for maximal operators,” in: Preprint IC/2003/43, ICTP Trieste, Italy, 2003.

  16. B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Contemporary Geometry [in Russian], Nauka, Moscow, 1986.

    Google Scholar 

  17. P. Hartman and L. Nirenberg, “On spherical image maps whose Jacobians do not change sign,” Amer. J. Math., 81 (1959), 901–920.

    MathSciNet  MATH  Google Scholar 

  18. B. Malgrange, Ideals of Differentiale Functions, Oxford Univ. Press, Oxford, 1966.

    Google Scholar 

  19. H. Hironaka, “Resolution of singularities of an algebraic variety over a field of characteristic zero, I, II,” Ann. of Math., 79 (1964), no. 2, 109–326.

    MATH  MathSciNet  Google Scholar 

  20. J. Duistermaat, “Oscillatory integrals, Lagrange immersions, and unfolding of singularities,” Comm. Pure Appl. Math., 27 (1974), no. 2, 207–281.

    MATH  MathSciNet  Google Scholar 

  21. G. I. Arkhipov, A. A. Karatsuba, and V. N. Chubarikov, “Trigonometric integrals,” Izv. Akad. Nauk SSSR Ser. Mat. [Math. USSR-Izv.], 43 (1979), no. 5, 971–1003.

    MathSciNet  Google Scholar 

  22. A. Carbery, M. Christ and J. Wright, “Multidimensional van der Corput lemma and sublevel set estimates,” J. Amer. Math. Soc., 12 (1999), no. 4, 981–1015.

    Article  MathSciNet  MATH  Google Scholar 

  23. M. V. Fedoryuk, Saddle-Point Method [in Russian], Nauka, Moscow, 1977.

    MATH  Google Scholar 

  24. D. A. Popov, “Estimates with constants for some classes of oscillatory integrals,” Uspekhi Mat. Nauk [Russian Math. Surveys], 52 (1997), no. 1, 77–148.

    MATH  MathSciNet  Google Scholar 

  25. J. G. van der Corput, “Zahlentheoretische Abschatzungen,” Math. Ann., 84 (1921), 53–79.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Matematicheskie Zametki, vol. 78, no. 6, 2005, pp. 833–852.

Original Russian Text Copyright ©2005 by I. A. Ikromov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikromov, I.A. Damped Oscillatory Integrals and Maximal Operators. Math Notes 78, 773–790 (2005). https://doi.org/10.1007/s11006-005-0183-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11006-005-0183-z

Key words

Navigation