Log in

Derived Brackets

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We survey the many instances of derived bracket construction in differential geometry, Lie algebroid and Courant algebroid theories, and their properties. We recall and compare the constructions of Buttin and of Vinogradov, and we prove that the Vinogradov bracket is the skew-symmetrization of a derived bracket. Odd (resp., even) Poisson brackets on supermanifolds are derived brackets of canonical even (resp., odd) Poisson brackets on their cotangent bundle (resp., parity-reversed cotangent bundle). Lie algebras have analogous properties, and the theory of Lie algebroids unifies the results valid for manifolds on the one hand, and for Lie algebras on the other. We outline the role of derived brackets in the theory of ‘Poisson structures with background’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alekseev A., Xu P. Derived brackets and Courant algebroids, in preparation

  • M. Alexandrov A. Schwarz O. Zaboronsky M. Kontsevich (1997) ArticleTitleThe geometry of the master equation and topological quantum field theory Internal J. Modern Phys. A 12 IssueID7 1405–1429

    Google Scholar 

  • M. Bangoura Y. Kosmann-Schwarzbach (1993) ArticleTitleThe double of a Jacobian quasi-bialgebra Lett. Math. Phys. 28 13–29

    Google Scholar 

  • I. Batalin R. Marnelius (1999) ArticleTitleDualities between Poisson brackets and antibrackets Internal J. Modern Phys. A14 IssueID32 5049–5073

    Google Scholar 

  • Bursztyn H., Crainic M. Dirac structures, moment maps and quasi-Poisson manifolds, mathDG/0310445.

  • C. Buttin (1969) ArticleTitleLes dérivations des champs de tenseurs et l’invariant différentiel de Schouten C.R. Acad. Sci. Paris A 269 87–89

    Google Scholar 

  • C. Buttin (1974) ArticleTitleThéorie des opérateurs différentiels gradués sur les formes différentielles Bull. Soc. Math. France 102 49–73

    Google Scholar 

  • A. Cabras A.M. Vinogradov (1992) ArticleTitleExtensions of the Poisson bracket to differential forms and multi-vector fields J. Geom. Phys. 9 75–100

    Google Scholar 

  • H Cartan (1950) Notion d’algèbre différentielle ; applications aux groupes de Lie et aux variétés où opère un groupe de Lie, Colloque de Topologie, tenu à Bruxelles, 5-8 juin 1950 CBRM Georges Thone, Liège 15–27

    Google Scholar 

  • P. Cartier (1994) Some fundamental techniques in the theory of integrable systems O. Babelon P. Cartier Y Kosmann-Schwarzbach (Eds) Lectures on Integrable Systems World Scientific Singapore 1–41

    Google Scholar 

  • T.J. Courant (1990) ArticleTitleDirac manifolds Trans. Amer. Math. Soc. 319 631–661

    Google Scholar 

  • T. J. Courant A. Weinstein (1988) Beyond Poisson structures P. Dazord N. Desolneux-Moulis (Eds) Actions hamiltoniennes de groupes. Troisièmne théorème de Lie (Lyon, 1986), Travaux en Cours 27 Hermann Paris

    Google Scholar 

  • Yu.L. Daletskii V.A. Kushnirevitch (1997) ArticleTitleFormal differential geometry and Nambu-Takhtajan algebra Banach Center Publ. 40 293–302

    Google Scholar 

  • I.Ya. Dorfman (1987) ArticleTitleDirac structures of integrable evolution equations Physics Lett. A 125 240–246

    Google Scholar 

  • I.Ya.( Dorfman (1993) Dirac Structures and Integrability of Nonlinear Evolution Equations Wiley New York

    Google Scholar 

  • M. Dubois-Violette P. Michor (1997) ArticleTitleMore on the Frölicher-Nijenhuis bracket in non commutative differential geometry J. Pure Appl. Algebra. 121 107–135

    Google Scholar 

  • A. FrölicherA. Nijenhuis (1956) ArticleTitleTheory of vector-valued differential forms Part I Indag Math. 18 338–359

    Google Scholar 

  • Gel’fand, I. M. Daletskii, Yu. L. Tsygan, B. L. On a variant of noncommutative differential geometry. Dokl. Akad. Nauk SSSR. 308(6) (1989), 293–1297 Soviet Math. Dokl. 40(2) (1990), 422–426.(See also Seminar on Supermanifolds, Report no. 16, Stockholm, 1987.)

  • Gel’fand, I. M. Dorfman, I. Ya.: Schouten bracket and Hamiltonian operators, Funkt. Anal. i Prilozhen. 14(3) (1980), 71–74;Funct. Anal. Appl. 14 (1981), 223–226.

  • Grabowski, J.: Extension of Poisson brackets to differential forms, In: H.-D. Doebner, W. Scherer and C. Schulte, (eds.), Group 21, Vol. 2, World Scientific, Singapore, 1997; Z-graded extensions of Poisson brackets, Rep. Math. Phys. 9 (1997), 1–27.

    Google Scholar 

  • J. Grabowski P. Urbański (1997) ArticleTitleTangent and cotangent lifts and graded Lie algebras associated with Lie algebroids Ann.Global Anal.Geom. 15 447–486

    Google Scholar 

  • N. Hitchin (2003) ArticleTitleGeneralized Calabi–Yau manifolds Quart J. Math. 54 281–305

    Google Scholar 

  • C. Klimčík T. Strobl (2002) ArticleTitleWZW-Poisson manifolds J. Geom. Phys. 43 341–344

    Google Scholar 

  • Y. Kosmann-Schwarzbach (1992) ArticleTitleJacobian quasi-bialgebras and quasi-Poisson Lie groups. Contemp. Math. 132 459–489

    Google Scholar 

  • Y. Kosmann-Schwarzbach (1995) ArticleTitleExact Gerstenhaber algebras and Lie bialgebroids Acta. Appl. Math. 41 153–165

    Google Scholar 

  • Y. Kosmann-Schwarzbach (1996) ArticleTitleFrom Poisson algebras to Gerstenhaber algebras Ann. Inst. Fourier (Grenoble) 46 1241–1272

    Google Scholar 

  • Y. Kosmann-Schwarzbach (1997) Derived brackets and the gauge algebra of closed string field theory H.-D. Doebner V. K. Dobrev (Eds) Quantum Group Symposium at GROUP 21 (Goslar, 1996) Heron Press Sofia 53–61

    Google Scholar 

  • Y. Kosmann-Schwarzbach (2000) Odd and even Poisson brackets H.-D. Doebner V. K. Dobrev J.-D. Hennig W. Lücke (Eds) Quantum Theory and Symmetries World Scientific Singapore 565–571

    Google Scholar 

  • Y. Kosmann-Schwarzbach (2004) Quasi, twisted and all that... in Poisson geometry and Lie algebroid theory J. E. Marsden T. S. Ratiu (Eds) The Breadth of Symplectic and Poisson Geometry Progr. in Math. Birkhäuser Boston

    Google Scholar 

  • Y. Kosmann-Schwarzbach F. Magri (1990) ArticleTitlePoisson–Nijenhuis structures Ann. Inst. Henri Poincaré A 53 35–81

    Google Scholar 

  • B. Kostant S. Sternberg (1987) ArticleTitleSymplectic reduction, BRS cohomology and infinite-dimensional Clifford algebras Ann. Phys. (N.Y.) 176 49–113

    Google Scholar 

  • Koszul J.-L.: Crochet de Schouten-Nijenhuis et cohomologie. Astérisque, hors série. (1985), 257–271.

  • Koszul, J.-L.: personal communication (1994) of unpublished notes (1990).

  • Krasilsh’chik, I.: Supercanonical algebras and Schouten brackets, Mat. Zam. 49(1) (1991), 70–76; Math.Notes 49(1–2) (1991), 50–54.

  • Kumpera, A. Spencer, D.: Lie Equations, Volume I, General Theory, Princeton University Press, 1972.

  • P. Lecomte C. Roger (1990) ArticleTitleModules et cohomologie des bigèbres de Lie,C.R Acad Sci. Paris, Sér. I310 405–410

    Google Scholar 

  • A. Lichnerowicz (1977) ArticleTitleLes variétés de Poisson et leurs algèbres de Lie associées J. Differential Geom. 12 253–300

    Google Scholar 

  • Z.-J. Liu A. Weinstein P. Xu (1997) ArticleTitleManin triples for Lie bialgebroids J. Differential Geom. 45 547–574

    Google Scholar 

  • J.-L. Loday (1993) ArticleTitleUne version non commutative des algèbres de Lie: les algèbres de Leibniz Enseig. Math. 39 613–646

    Google Scholar 

  • K.C.H. Mackenzie Xu ** (1994) ArticleTitleLie bialgebroids and Poisson groupoids.Duke Math J. 73 415–452

    Google Scholar 

  • P. W. Michor (1985) ArticleTitleA generalization of Hamiltonian dynamics. J. Geom Phys. 2 IssueID2 67–82

    Google Scholar 

  • A. Nijenhuis (1955) ArticleTitleJacobi-type identities for bilinear differential concomitants of certain tensor fields Indag. Math. 17 390–403

    Google Scholar 

  • A. Nijenhuis (1967) ArticleTitleThe graded Lie algebras of an algebra. Indag Math. 29 475–486

    Google Scholar 

  • R. NijenhuisA. Richardson (1967) ArticleTitleDeformations of Lie algebra structures J. Math. Mech. 171 89–106

    Google Scholar 

  • R. Ouzilou (1983) Hamiltonian actions on Poisson manifolds A. Crumeyrolle J. Grifone (Eds) Symplectic Geometry Pitman London 172–183

    Google Scholar 

  • J.S. Park (2001) opological open p-branes K. Fukaya Y.-G. Oh K. Ono G. Tian (Eds) Symplectic geometry and mirror symmetry (Seoul, 2000) World Scientific Singapore 311–384

    Google Scholar 

  • C. Roger (1991) Algèbres de Lie graduées et quantification P. Donato C. Duval J. Elhadad G. M. Tuynman (Eds) Symplectic Geometry and Mathematical Physics, Progr. in Math. 99 Birkhäuser Basel 374–421

    Google Scholar 

  • Roytenberg, D.: Courant algebroids, derived brackets and even symplectic supermanifolds, Ph.D. thesis, U. C. Berkeley, 1999;mathDG/9910078.

  • D. Roytenberg (2002) ArticleTitleQuasi-Lie bialgebroids and twisted Poisson manifolds Lett. Math. Phys. 61 123–137

    Google Scholar 

  • Roytenberg, D.: On the structure of graded symplectic supermanifolds and Courant algebroids, In: T. Voronov, (ed), Quantization, Poisson Brackets and Beyond, Contemp. Math. 315, Amer. Math. Soc., Providence, 2002, pp. 169–185.

  • J.A. Schouten (1940) ArticleTitleÜber Differentialkomitanten zweier kontravarianter Grössen Proc. Ned. Akad. Wet. Amsterdam 43 449–452

    Google Scholar 

  • P. Severa A. Weinstein (2001) ArticleTitlePoisson geometry with a 3-form background Progr. Theor. Phys. Suppl. 144 145–154

    Google Scholar 

  • W.M. Tulczjyew (1974) ArticleTitleThe graded Lie algebra of multivector fields and the generalized Lie derivative of forms Bull. Acad. Pol. Sci. 22 937–942

    Google Scholar 

  • Vaintrob, A.: Lie algebroids and homological vector fields, Uspekhi Mat. Nauk 52 (2) (1997), 161–162; Russian Math. Surv. 52(2) (1997), 428–429.

  • Vinogradov, A. M.: Unification of the Schouten and Nijenhuis brackets, cohomology, and superdifferential operators, Mat. Zam. 47(6) (1990), 138–140 [not translated in Math. Notes].

  • Voronov, T. Graded manifolds and Drinfeld doubles for Lie bialgebroids, In: T. Voronov (ed), Quantization, Poisson Brackets and Beyond, Contemp. Math. 315, Amer. Math. Soc., Providence, 2002, pp. 131-168.

  • A. Wade (2002) ArticleTitleNambu–Dirac structures for Lie algebroids Lett. Math. Phys. 61 85–99

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvette Kosmann-Schwarzbach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosmann-Schwarzbach, Y. Derived Brackets. Lett Math Phys 69, 61–87 (2004). https://doi.org/10.1007/s11005-004-0608-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-004-0608-8

Keywords

Navigation