Log in

Vibration characteristics of moving sigmoid functionally graded plates containing porosities

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

This study investigates vibration characteristics of longitudinally moving sigmoid functionally graded material (S-FGM) plates containing porosities. Two types of porosity distribution, i.e., the even and uneven distributions, are taken into account. In accordance with the sigmoid distribution rule, the material properties of porous S-FGM plates vary smoothly along the plate thickness direction. The nonlinear geometrical relations are adopted by using the von Kármán non-linear plate theory. Based on the d’Alembert’s principle, the nonlinear governing equation of the system is derived. Then, the governing equation is discretized to a set of ordinary differential equations via the Galerkin method. These discretized equations are subsequently solved by using the method of harmonic balance. Analytical solutions are verified with the aid of the adaptive step-size fourth-order Runge–Kutta method. By using the perturbation technique, the stability of the steady-state response is highlighted. Finally, both natural frequencies and nonlinear forced responses of moving porous S-FGM plates are examined. Results demonstrate that the moving porous S-FGM plates exhibit hardening spring characteristics in the nonlinear frequency response. Moreover, it is shown that the type of porosity distribution, moving speed, porosity volume fraction, constituent volume fraction and in-plane pretension all have significant influence on the nonlinear forced responses of moving porous S-FGM plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ait Atmane, H., Tounsi, A., Mechab, I., Adda Bedia, E.A.: Free vibration analysis of functionally graded plates resting on Winkler–Pasternak elastic foundations using a new shear deformation theory. Int. J. Mech. Mater. Des. 6, 113–121 (2010)

    Article  Google Scholar 

  • Ait Atmane, H., Tounsi, A., Bernard, F.: Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations. Int. J. Mech. Mater. Des. 13, 71–84 (2017)

    Article  Google Scholar 

  • Alibeigloo, A., Alizadeh, M.: Static and free vibration analyses of functionally graded sandwich plates using state space differential quadrature method. Eur. J. Mech. A. Solids 54, 252–266 (2015)

    Article  MathSciNet  Google Scholar 

  • Alijani, F., Bakhtiari-Nejad, F., Amabili, M.: Nonlinear vibrations of FGM rectangular plates in thermal environments. Nonlinear Dyn. 66, 251–270 (2011)

    Article  MathSciNet  Google Scholar 

  • Alipour, M.M., Shariyat, M., Shaban, M.: A semi-analytical solution for free vibration of variable thickness two-directional-functionally graded plates on elastic foundations. Int. J. Mech. Mater. Des. 6, 293–304 (2010)

    Article  Google Scholar 

  • Allahverdizadeh, A., Oftadeh, R., Mahjoob, M., Naei, M.: Homotopy perturbation solution and periodicity analysis of nonlinear vibration of thin rectangular functionally graded plates. Acta Mech. Solida Sin. 27, 210–220 (2014)

    Article  Google Scholar 

  • Amabili, M.: Nonlinear vibrations of rectangular plates with different boundary conditions: theory and experiments. Comput. Struct. 82, 2587–2605 (2004)

    Article  Google Scholar 

  • Amabili, M.: Nonlinear Vibrations and Stability of Shells and Plates. Cambridge University Press, New York (2008)

    Book  Google Scholar 

  • Atmane, H.A., Tounsi, A., Ziane, N., Mechab, I.: Mathematical solution for free vibration of sigmoid functionally graded beams with varying cross-section. Steel Compos. Struct. 11, 489–504 (2011)

    Article  Google Scholar 

  • Ben-Oumrane, S., Abedlouahed, T., Ismail, M., Mohamed, B.B., Mustapha, M., El Abbas, A.B.: A theoretical analysis of flexional bending of Al/Al2O3 S-FGM thick beams. Comput. Mater. Sci. 44, 1344–1350 (2009)

    Article  Google Scholar 

  • Chi, S.H., Chung, Y.L.: Cracking in sigmoid functionally graded coating. J. Mech. 18, 41–53 (2002)

    Google Scholar 

  • Chi, S.-H., Chung, Y.-L.: Mechanical behavior of functionally graded material plates under transverse load—part I: analysis. Int. J. Solids Struct. 43, 3657–3674 (2006a)

    Article  Google Scholar 

  • Chi, S.-H., Chung, Y.-L.: Mechanical behavior of functionally graded material plates under transverse load—part II: numerical results. Int. J. Solids Struct. 43, 3675–3691 (2006b)

    Article  Google Scholar 

  • Ding, H., Chen, L.-Q.: Galerkin methods for natural frequencies of high-speed axially moving beams. J. Sound Vib. 329, 3484–3494 (2010)

    Article  Google Scholar 

  • Ding, H., Zhang, G.-C., Chen, L.-Q., Yang, S.-P.: Forced vibrations of supercritically transporting viscoelastic beams. ASME J. Vib. Acoust. 134, 051007 (2012)

    Article  Google Scholar 

  • Ebrahimi, F., Zia, M.: Large amplitude nonlinear vibration analysis of functionally graded Timoshenko beams with porosities. Acta Astronaut. 116, 117–125 (2015)

    Article  Google Scholar 

  • Fereidoon, A., Asghardokht seyedmahalle, M., Mohyeddin, A.: Bending analysis of thin functionally graded plates using generalized differential quadrature method. Arch. Appl. Mech. 81, 1523–1539 (2011)

    Article  Google Scholar 

  • Gupta, A., Talha, M., Singh, B.N.: Vibration characteristics of functionally graded material plate with various boundary constraints using higher order shear deformation theory. Compos. B Eng. 94, 64–74 (2016)

    Article  Google Scholar 

  • Han, S.-C., Lee, W.-H., Park, W.-T.: Non-linear analysis of laminated composite and sigmoid functionally graded anisotropic structures using a higher-order shear deformable natural Lagrangian shell element. Compos. Struct. 89, 8–19 (2009)

    Article  Google Scholar 

  • Hao, Y.X., Zhang, W., Yang, J.: Nonlinear oscillation of a cantilever FGM rectangular plate based on third-order plate theory and asymptotic perturbation method. Compos. B Eng. 42, 402–413 (2011)

    Article  Google Scholar 

  • Hao, Y.X., Zhang, W., Yang, J.: Nonlinear dynamics of a FGM plate with two clamped opposite edges and two free edges. Acta Mech. Solida Sin. 27, 394–406 (2014)

    Article  Google Scholar 

  • **, G., Su, Z., Ye, T., Gao, S.: Three-dimensional free vibration analysis of functionally graded annular sector plates with general boundary conditions. Compos. B Eng. 83, 352–366 (2015)

    Article  Google Scholar 

  • Ke, L.L., Yang, J., Kitipornchai, S., Bradford, M.A., Wang, Y.S.: Axisymmetric nonlinear free vibration of size-dependent functionally graded annular microplates. Compos. B Eng. 53, 207–217 (2013)

    Article  Google Scholar 

  • Marynowski, K., Kapitaniak, T.: Dynamics of axially moving continua (review). Int. J. Mech. Sci. 81, 26–41 (2014)

    Article  Google Scholar 

  • Mechab, B., Mechab, I., Benaissa, S., Ameri, M., Serier, B.: Probabilistic analysis of effect of the porosities in functionally graded material nanoplate resting on Winkler–Pasternak elastic foundations. Appl. Math. Model. 40, 738–749 (2016)

    Article  MathSciNet  Google Scholar 

  • Nguyen, T.-K.: A higher-order hyperbolic shear deformation plate model for analysis of functionally graded materials. Int. J. Mech. Mater. Des. 11, 203–219 (2015)

    Article  Google Scholar 

  • Swaminathan, K., Naveenkumar, D.T., Zenkour, A.M., Carrera, E.: Stress, vibration and buckling analyses of FGM plates—a state-of-the-art review. Compos. Struct. 120, 10–31 (2015)

    Article  Google Scholar 

  • Thai, H.-T., Nguyen, T.-K., Vo, T.P., Lee, J.: Analysis of functionally graded sandwich plates using a new first-order shear deformation theory. Eur. J. Mech. A. Solids 45, 211–225 (2014)

    Article  MathSciNet  Google Scholar 

  • Wang, Y.Q.: Nonlinear vibration of a rotating laminated composite circular cylindrical shell: traveling wave vibration. Nonlinear Dyn. 77, 1693–1707 (2014)

    Article  MathSciNet  Google Scholar 

  • Wang, Y., Zu, J.W.: Analytical analysis for vibration of longitudinally moving plate submerged in infinite liquid domain. Appl. Math. Mech. 38, 625–646 (2017a)

    Article  MathSciNet  Google Scholar 

  • Wang, Y.Q., Zu, J.W.: Instability of viscoelastic plates with longitudinally variable speed and immersed in ideal liquid. Int. J. Appl. Mech. 9, 1750005 (2017b)

    Article  Google Scholar 

  • Wang, Y.Q., Zu, J.W.: Nonlinear dynamic thermoelastic response of rectangular FGM plates with longitudinal velocity. Compos. B Eng. 117, 74–88 (2017c)

    Article  Google Scholar 

  • Wang, Y.Q., Zu, J.W.: Nonlinear dynamics of functionally graded material plates under dynamic liquid load and with longitudinal speed. Int. J. Appl. Mech. 9, 1750054 (2017d)

    Article  Google Scholar 

  • Wang, Y.Q., Zu, J.W.: Nonlinear steady-state responses of longitudinally traveling functionally graded material plates in contact with liquid. Compos. Struct. 164, 130–144 (2017e)

    Article  Google Scholar 

  • Wang, Y.Q., Guo, X.H., Chang, H.H., Li, H.Y.: Nonlinear dynamic response of rotating circular cylindrical shells with precession of vibrating shape—part I: numerical solution. Int. J. Mech. Sci. 52, 1217–1224 (2010)

    Article  Google Scholar 

  • Wang, Y.Q., Liang, L., Guo, X.H.: Internal resonance of axially moving laminated circular cylindrical shells. J. Sound Vib. 332, 6434–6450 (2013)

    Article  Google Scholar 

  • Wang, Y., Du, W., Huang, X., Xue, S.: Study on the dynamic behavior of axially moving rectangular plates partially submersed in fluid. Acta Mech. Solida Sin. 28, 706–721 (2015)

    Article  Google Scholar 

  • Wang, Y.Q., Huang, X.B., Li, J.: Hydroelastic dynamic analysis of axially moving plates in continuous hot-dip galvanizing process. Int. J. Mech. Sci. 110, 201–216 (2016a)

    Article  Google Scholar 

  • Wang, Y.Q., Xue, S.W., Huang, X.B., Du, W.: Vibrations of axially moving vertical rectangular plates in contact with fluid. Int. J. Struct. Stab. Dyn. 16, 1450092 (2016b)

    Article  MathSciNet  Google Scholar 

  • Wattanasakulpong, N., Chaikittiratana, A.: Flexural vibration of imperfect functionally graded beams based on Timoshenko beam theory: Chebyshev collocation method. Meccanica 50, 1331–1342 (2015)

    Article  MathSciNet  Google Scholar 

  • Wattanasakulpong, N., Ungbhakorn, V.: Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities. Aerosp. Sci. Technol. 32, 111–120 (2014)

    Article  Google Scholar 

  • Wattanasakulpong, N., Gangadhara Prusty, B., Kelly, D.W., Hoffman, M.: Free vibration analysis of layered functionally graded beams with experimental validation. Mater. Des. 36, 182–190 (2012)

    Article  Google Scholar 

  • Wolfram, S.: The Mathematica Book. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  • Yang, X.D., Zhang, W.: Nonlinear dynamics of axially moving beam with coupled longitudinal–transversal vibrations. Nonlinear Dyn. 78, 2547–2556 (2014)

    Article  Google Scholar 

  • Yang, J., Hao, Y.X., Zhang, W., Kitipornchai, S.: Nonlinear dynamic response of a functionally graded plate with a through-width surface crack. Nonlinear Dyn. 59, 207–219 (2010)

    Article  Google Scholar 

  • Yang, X.D., Chen, L.Q., Zu, J.W.: Vibrations and stability of an axially moving rectangular composite plate. J. Appl. Mech. 78, 011018 (2011)

    Article  Google Scholar 

  • Yang, X.-D., Yang, S., Qian, Y.-J., Zhang, W., Melnik, R.V.N.: Modal analysis of the gyroscopic continua: comparison of continuous and discretized models. J. Appl. Mech. 83, 084502 (2016a)

    Article  Google Scholar 

  • Yang, X.-D., Zhang, W., Melnik, R.V.N.: Energetics and invariants of axially deploying beam with uniform velocity. AIAA J. 54, 2181–2187 (2016b)

    Google Scholar 

  • Zhang, W., Yang, J., Hao, Y.X.: Chaotic vibrations of an orthotropic FGM rectangular plate based on third-order shear deformation theory. Nonlinear Dyn. 59, 619–660 (2010)

    Article  Google Scholar 

  • Zhang, W., Wang, D.M., Yao, M.H.: Using Fourier differential quadrature method to analyze transverse nonlinear vibrations of an axially accelerating viscoelastic beam. Nonlinear Dyn. 78, 839–856 (2014)

    Article  MathSciNet  Google Scholar 

  • Zhu, J., Lai, Z., Yin, Z., Jeon, J., Lee, S.: Fabrication of ZrO2–NiCr functionally graded material by powder metallurgy. Mater. Chem. Phys. 68, 130–135 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant Nos. 11672071, 11302046, 11672072) and the Fundamental Research Funds for the Central Universities (Grant No. N150504003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Qing Wang.

Appendix

Appendix

The coefficient formulations in Eq. (33) are as follows

$$ \begin{aligned} \bar{J}_{1} = 1 \hfill \\ \bar{J}_{2} = \frac{c}{{\int_{0}^{{\frac{h}{2}}} {\rho_{1} (z){\text{d}}z} + \int_{{-\frac{h}{2}}}^{0} {\rho_{2} (z){\text{d}}z} }} \hfill \\ \bar{J}_{3} = - \frac{16V}{3a} \hfill \\ \bar{J}_{4} = \frac{{\pi^{4} D_{11} }}{{a^{4} \left( {\int_{0}^{{\frac{h}{2}}} {\rho_{1} (z){\text{d}}z} + \int_{{ - \frac{h}{2}}}^{0} {\rho_{2} (z){\text{d}}z} } \right)}} + \frac{{2\pi^{4} D_{12} }}{{a^{2} b^{2} \left( {\int_{0}^{{\frac{h}{2}}} {\rho_{1} (z){\text{d}}z} + \int_{{-\frac{h}{2}}}^{0} {\rho_{2} (z){\text{d}}z} } \right)}} + \hfill \\ \quad \quad {\kern 1pt} \frac{{4\pi^{4} D_{66} }}{{a^{2} b^{2} \left( {\int_{0}^{{\frac{h}{2}}} {\rho_{1} (z){\text{d}}z} + \int_{{ - \frac{h}{2}}}^{0} {\rho_{2} (z){\text{d}}z} } \right)}} + \frac{{\pi^{2} N_{0} }}{{a^{2} \left( {\int_{0}^{{\frac{h}{2}}} {\rho_{1} (z){\text{d}}z} + \int_{{-\frac{h}{2}}}^{0} {\rho_{2} (z){\text{d}}z} } \right)}} \hfill \\ {\kern 1pt} \quad \quad - \frac{{\pi^{2} V^{2} }}{{a^{2} }} + \frac{{\pi^{4} D_{22} }}{{b^{4} \left( {\int_{0}^{{\frac{h}{2}}} {\rho_{1} (z){\text{d}}z} + \int_{{-\frac{h}{2}}}^{0} {\rho_{2} (z){\text{d}}z} } \right)}} \hfill \\ \bar{J}_{5} = - \frac{8cV}{{3a\left( {\int_{0}^{{\frac{h}{2}}} {\rho_{1} (z){\text{d}}z} + \int_{{-\frac{h}{2}}}^{0} {\rho_{2} (z){\text{d}}z} } \right)}} \hfill \\ \bar{J}_{6} = {{\left( {\frac{{3\pi^{4} A_{11} }}{{32a^{4} }} + \frac{{3\pi^{4} A_{12} }}{{16a^{2} b^{2} }} - \frac{{\pi^{4} A_{66} }}{{8a^{2} b^{2} }} + \frac{{3\pi^{4} A_{22} }}{{32b^{4} }}} \right)} \mathord{\left/ {\vphantom {{\left( {\frac{{3\pi^{4} A_{11} }}{{32a^{4} }} + \frac{{3\pi^{4} A_{12} }}{{16a^{2} b^{2} }} - \frac{{\pi^{4} A_{66} }}{{8a^{2} b^{2} }} + \frac{{3\pi^{4} A_{22} }}{{32b^{4} }}} \right)} {\left( {\int_{0}^{{\frac{h}{2}}} {\rho_{1} (z){\text{d}}z} + \int_{{ - \frac{h}{2}}}^{0} {\rho_{2} (z){\text{d}}z} } \right)}}} \right. \kern-0pt} {\left( {\int_{0}^{{\frac{h}{2}}} {\rho_{1} (z){\text{d}}z} + \int_{{ - \frac{h}{2}}}^{0} {\rho_{2} (z){\text{d}}z} } \right)}} \hfill \\ \bar{J}_{7} = {{\left( {\frac{{3\pi^{4} A_{11} }}{{4a^{4} }} + \frac{{21\pi^{4} A_{12} }}{{16a^{2} b^{2} }} - \frac{{\pi^{4} A_{66} }}{{a^{2} b^{2} }} + \frac{{3\pi^{4} A_{22} }}{{16b^{4} }}} \right)} \mathord{\left/ {\vphantom {{\left( {\frac{{3\pi^{4} A_{11} }}{{4a^{4} }} + \frac{{21\pi^{4} A_{12} }}{{16a^{2} b^{2} }} - \frac{{\pi^{4} A_{66} }}{{a^{2} b^{2} }} + \frac{{3\pi^{4} A_{22} }}{{16b^{4} }}} \right)} {\left( {\int_{0}^{{\frac{h}{2}}} {\rho_{1} (z){\text{d}}z} + \int_{{ - \frac{h}{2}}}^{0} {\rho_{2} (z){\text{d}}z} } \right)}}} \right. \kern-0pt} {\left( {\int_{0}^{{\frac{h}{2}}} {\rho_{1} (z){\text{d}}z} + \int_{{ - \frac{h}{2}}}^{0} {\rho_{2} (z){\text{d}}z} } \right)}} \hfill \\ \bar{J}_{8} = {{\left( {\frac{{32\pi^{2} B_{11} }}{{9a^{4} }} + \frac{{160\pi^{2} B_{12} }}{{9a^{2} b^{2} }} + \frac{{32\pi^{2} B_{66} }}{{9a^{2} b^{2} }} + \frac{{32\pi^{2} B_{22} }}{{9b^{4} }}} \right)} \mathord{\left/ {\vphantom {{\left( {\frac{{32\pi^{2} B_{11} }}{{9a^{4} }} + \frac{{160\pi^{2} B_{12} }}{{9a^{2} b^{2} }} + \frac{{32\pi^{2} B_{66} }}{{9a^{2} b^{2} }} + \frac{{32\pi^{2} B_{22} }}{{9b^{4} }}} \right)} {\left( {\int_{0}^{{\frac{h}{2}}} {\rho_{1} (z){\text{d}}z} + \int_{{-\frac{h}{2}}}^{0} {\rho_{2} (z){\text{d}}z} } \right)}}} \right. \kern-0pt} {\left( {\int_{0}^{{\frac{h}{2}}} {\rho_{1} (z){\text{d}}z} + \int_{{-\frac{h}{2}}}^{0} {\rho_{2} (z){\text{d}}z} } \right)}} \hfill \\ \bar{J}_{9} = {{\left( {\frac{{3584\pi^{2} B_{11} }}{{45a^{4} }} + \frac{{512\pi^{2} B_{12} }}{{9a^{2} b^{2} }} + \frac{{1664\pi^{2} B_{66} }}{{45a^{2} b^{2} }} + \frac{{128\pi^{2} B_{22} }}{{45b^{4} }}} \right)} \mathord{\left/ {\vphantom {{\left( {\frac{{3584\pi^{2} B_{11} }}{{45a^{4} }} + \frac{{512\pi^{2} B_{12} }}{{9a^{2} b^{2} }} + \frac{{1664\pi^{2} B_{66} }}{{45a^{2} b^{2} }} + \frac{{128\pi^{2} B_{22} }}{{45b^{4} }}} \right)} {\left( {\int_{0}^{{\frac{h}{2}}} {\rho_{1} (z){\text{d}}z} + \int_{{-\frac{h}{2}}}^{0} {\rho_{2} (z){\text{d}}z} } \right)}}} \right. \kern-0pt} {\left( {\int_{0}^{{\frac{h}{2}}} {\rho_{1} (z){\text{d}}z} + \int_{{-\frac{h}{2}}}^{0} {\rho_{2} (z){\text{d}}z} } \right)}} \hfill \\ \bar{J}_{10} = \frac{{4F_{0} }}{{ab\left( {\int_{0}^{{\frac{h}{2}}} {\rho_{1} (z){\text{d}}z} + \int_{{-\frac{h}{2}}}^{0} {\rho_{2} (z){\text{d}}z} } \right)}}\sin \left( {\frac{{\pi x_{0} }}{a}} \right)\sin \left( {\frac{{\pi y_{0} }}{b}} \right) \hfill \\ \end{aligned} $$
(47)
$$ \begin{aligned} \bar{K}_{1} { = }1 \hfill \\ \bar{K}_{2} { = }\frac{16V}{3a} \hfill \\ \bar{K}_{3} { = }\frac{c}{{\left( {\int_{0}^{{\frac{h}{2}}} {\rho_{1} (z){\text{d}}z} + \int_{{ - \frac{h}{2}}}^{0} {\rho_{2} (z){\text{d}}z} } \right)}} \hfill \\ \bar{K}_{4} { = }\frac{8cV}{{3a\left( {\int_{0}^{{\frac{h}{2}}} {\rho_{1} (z){\text{d}}z} + \int_{{ - \frac{h}{2}}}^{0} {\rho_{2} (z){\text{d}}z} } \right)}} \hfill \\ \bar{K}_{5} { = }\frac{1}{{a^{4} b^{4} \left( {\int_{0}^{{\frac{h}{2}}} {\rho_{1} (z){\text{d}}z} + \int_{{ - \frac{h}{2}}}^{0} {\rho_{2} (z){\text{d}}z} } \right)}}(\pi^{4} a^{4} D_{22} - 4\pi^{2} a^{2} b^{4} V^{2} \left( {\int_{0}^{{\frac{h}{2}}} {\rho_{1} (z){\text{d}}z} + \int_{{ - \frac{h}{2}}}^{0} {\rho_{2} (z){\text{d}}z} } \right) \hfill \\ {\kern 1pt} \quad \quad + 4\pi^{2} a^{2} b^{4} N_{0}^{{}} + 8\pi^{4} a^{2} b^{2} D_{12} + 16\pi^{4} a^{2} b^{2} D_{66} + 16\pi^{4} b^{4} D_{11} ) \hfill \\ \bar{K}_{6} { = }\frac{{\pi^{4} (3a^{4} A_{22} + 24a^{2} A_{12} b^{2} - 16a^{2} A_{66} b^{2} + 48A_{11} b^{4} )}}{{32a^{4} b^{4} \left( {\int_{0}^{{\frac{h}{2}}} {\rho_{1} (z){\text{d}}z} + \int_{{ - \frac{h}{2}}}^{0} {\rho_{2} (z){\text{d}}z} } \right)}} \hfill \\ \bar{K}_{7} { = }\frac{{\pi^{4} (3a^{4} A_{22} + 9a^{2} A_{12} b^{2} - 4a^{2} A_{66} b^{2} + 12A_{11} b^{4} )}}{{16a^{4} b^{4} \left( {\int_{0}^{{\frac{h}{2}}} {\rho_{1} (z){\text{d}}z} + \int_{{ - \frac{h}{2}}}^{0} {\rho_{2} (z){\text{d}}z} } \right)}} \hfill \\ \bar{K}_{8} { = }\frac{{128\pi^{2} (2a^{4} B_{22} + 25a^{2} b^{2} B_{12} - 4a^{2} b^{2} B_{66} + 5b^{4} B_{11} )}}{{45a^{4} b^{4} \left( {\int_{0}^{{\frac{h}{2}}} {\rho_{1} (z){\text{d}}z} + \int_{{ - \frac{h}{2}}}^{0} {\rho_{2} (z){\text{d}}z} } \right)}} \hfill \\ \end{aligned} $$
(48)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y.Q., Zu, J.W. Vibration characteristics of moving sigmoid functionally graded plates containing porosities. Int J Mech Mater Des 14, 473–489 (2018). https://doi.org/10.1007/s10999-017-9385-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-017-9385-2

Keywords

Navigation