Log in

The role of tropomyosin isoforms and phosphorylation in force generation in thin-filament reconstituted bovine cardiac muscle fibres

  • Original Paper
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

The thin filament extraction and reconstitution protocol was used to investigate the functional roles of tropomyosin (Tm) isoforms and phosphorylation in bovine myocardium. The thin filament was extracted by gelsolin, reconstituted with G-actin, and further reconstituted with cardiac troponin together with one of three Tm varieties: phosphorylated αTm (αTm.P), dephosphorylated αTm (αTm.deP), and dephosphorylated βTm (βTm.deP). The effects of Ca, phosphate, MgATP and MgADP concentrations were examined in the reconstituted fibres at pH 7.0 and 25°C. Our data show that Ca2+ sensitivity (pCa50: half saturation point) was increased by 0.19 ± 0.07 units when βTm.deP was used instead of αTm.deP (P < 0.05), and by 0.27 ± 0.06 units when phosphorylated αTm was used (P < 0.005). The cooperativity (Hill factor) decreased (but insignificantly) from 3.2 ± 0.3 (5) to 2.8 ± 0.2 (7) with phosphorylation. The cooperativity decreased significantly from 3.2 ± 0.3 (5) to 2.1 ± 0.2 (9) with isoform change from αTm.deP to βTm.deP. There was no significant difference in isometric tension or stiffness between αTm.P, αTm.deP, and βTm.deP muscle fibres at saturating [Ca2+] or after rigor induction. Based on the six-state cross-bridge model, sinusoidal analysis indicated that the equilibrium constants of elementary steps differed up to 1.7× between αTm.deP and βTm.deP, and up to 2.0× between αTm.deP and αTm.P. The rate constants differed up to 1.5× between αTm.deP and βTm.deP, and up to 2.4× between αTm.deP and αTm.P. We conclude that tension and stiffness per cross-bridge are not significantly different among the three muscle models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amphlett GM, Syska H, Perry SV (1976) The polymorphic forms of tropomyosin and troponin I in develo** rabbit skeletal muscle. FEBS Lett 63:22–26

    Article  CAS  PubMed  Google Scholar 

  • Boussouf SE, Maytum R, Jaquet K, Geeves MA (2007) Role of tropomosin isoforms in the calcium sensitivity of striated muscle thin filaments. J Muscle Res Cell Motil 28:49–58

    Article  CAS  PubMed  Google Scholar 

  • Bowater R, Sleep J (1988) Demembranated muscle fibers catalyze a more rapid exchange between phosphate and adenosine triphosphate than actomyosin subfragment 1. Biochemistry 27:5314–5323

    Article  CAS  PubMed  Google Scholar 

  • Brandt PW, Cox RN, Kawai M, Robinson T (1982) Effect of cross-bridge kinetics on apparent Ca2+ sensitivity. J Gen Physiol 79:997–1016

    Article  CAS  PubMed  Google Scholar 

  • Briggs MM, McGinnis HD, Schachat F (1990) Transitions from fetal to fast troponin T isoforms are coordinated with changes in tropomyosin and α-actinin isoforms in develo** rabbit skeletal muscle. Dev Biol 140:253–260

    Article  CAS  PubMed  Google Scholar 

  • Brisson JR, Golosinska K, Smillie LB, Sykes BD (1986) Interaction of tropomyosin and troponin T: a proton nuclear magnetic resonance study. Biochemistry 25:4548–4555

    Article  CAS  PubMed  Google Scholar 

  • Bronson DD, Schachat FH (1982) Heterogeneity of contractile proteins: differences in tropomyosin in a fast, mixed and a slow skeletal muscles of the rabbit. J Biol Chem 257:3937–3944

    CAS  PubMed  Google Scholar 

  • Brown HR, Schachat FH (1985) Renaturation of skeletal muscle tropomyosin: implications for in vivo assembly. Proc Nat Acad Sci USA 82:2359–2363

    Article  CAS  PubMed  Google Scholar 

  • Brown JH, Zhou Z, Reshetnikova L, Robinson H, Yammani RD, Tobacman LS, Cohen C (2005) Structure of the mid-region of tropomyosin: bending and binding sites for actin. Proc Nat Acad Sci USA 102:18878–18883

    Article  CAS  PubMed  Google Scholar 

  • Cabral-Lilly D, Tobacman LS, Mehegan JP, Cohen C (1997) Molecular polarity in tropomyosin–troponin T co-crystals. Biophys J 73:1763–1770

    Article  CAS  PubMed  Google Scholar 

  • Chalovich JM (1992) Actin mediated regulation of muscle contraction. Pharmaco Ther 55:95–148

    Article  CAS  Google Scholar 

  • Cooke R (1997) Actomyosin interaction in striated muscle. Physiol Rev 77:671–697

    CAS  PubMed  Google Scholar 

  • Cooke R, Pate E (1985) The effects of ADP and phosphate on the contraction of muscle fibers. Biophys J 48:789–798

    Article  CAS  PubMed  Google Scholar 

  • Cummins P, Perry SV (1973) The subunits and biological activity of polymorphic forms of tropomyosin. Biochem J 133:765–777

    CAS  PubMed  Google Scholar 

  • Dantzig J, Goldman Y, Millar NC, Lacktis J, Homsher E (1992) Reversal of the cross-bridge force-generating transition by the photogeneration of phosphate in rabbit psoas muscle fibres. J Physiol 451:247–278

    CAS  PubMed  Google Scholar 

  • de Belle I, Mak AS (1987) Isolation and characterization of tropomyosin kinase from chicken embryo. Biochim Biophys Acta 925:17–26

    Google Scholar 

  • Ding W, Fujita H, Kawai M (2002) The length of cooperative units on the thin filament in rabbit psoas muscle fibres. Exp Physiol 87:691–697

    Article  PubMed  Google Scholar 

  • Eisenberg E, Kielley WW (1974) Troponin–tropomyosin complex. Column chromatographic separation and activity of the three active troponin components with and without tropomyosin present. J Biol Chem 249:4742–4748

    CAS  PubMed  Google Scholar 

  • Farah CS, Reinach FC (1999) Regulatory properties of recombinant tropomyosins containing 5-hydroxytryptophan: Ca2+-binding to troponin results in a conformational change in a region of tropomyosin outside the troponin binding site. Biochemistry 38:10543–10551

    Article  CAS  PubMed  Google Scholar 

  • Ferenczi MA, Simmons RM, Sleep JA (1982) General considerations of cross-bridge models in relation to the dependence on MgATP concentration of mechanical parameters of skinned fibers from frog muscles. Soc Gen Physiol Ser 37:91–107

    CAS  PubMed  Google Scholar 

  • Flicker PF, Phillips GN Jr, Cohen (1982) Troponin and its interactions with tropomyosin. An electron microscope study. J Mol Biol 162:495–501

    Article  CAS  PubMed  Google Scholar 

  • Fortune NS, Geeves MA, Ranatunga KW (1991) Tension responses to rapid pressure release in glycerinated rabbit muscle fibers. Proc Natl Acad Sci (USA) 88:7323–7327

    Article  CAS  Google Scholar 

  • Fujita H, Kawai M (2002) Temperature effect on isometric tension is mediated by regulatory proteins tropomyosin and troponin in bovine myocardium. J Physiol 539:267–276

    Article  CAS  PubMed  Google Scholar 

  • Fujita H, Yasuda K, Niitsu S, Funatsu T, Ishiwata S (1996) Structural and functional reconstitution of thin filaments in the contractile apparatus of cardiac muscle. Biophys J 71:2307–2318

    Article  CAS  PubMed  Google Scholar 

  • Fujita H, Sasaki D, Ishiwata S, Kawai M (2002) Elementary steps of the cross-bridge cycle in bovine myocardium with and without regulatory proteins. Biophys J 82:915–928

    Article  CAS  PubMed  Google Scholar 

  • Fujita H, Lu X, Suzuki M, Ishiwata S, Kawai M (2004) The effect of tropomyosin on force and elementary steps of the cross-bridge cycle in reconstituted bovine myocardium. J Physiol 556:637–649

    Article  CAS  PubMed  Google Scholar 

  • Gaffin RD, Gokulan K, Sacchettini JC, Hewett T, Klevitsky R, Robbins J, Muthuchamy M (2004) Charged residue changes in the carboxy-terminus of alpha-tropomyosin alter mouse cardiac muscle contractility. J Physiol 556.2:531–543

    Article  CAS  Google Scholar 

  • Gordon AM, Homsher E, Regnier M (2000) Regulation of contraction in striated muscle. Physiol Rev 80:853–924

    CAS  PubMed  Google Scholar 

  • Greene LE, Eisenberg E (1988) Relationship between regulated actomyosin ATPase activity and cooperative binding of myosin to regulated actin. Cell Biophys 12:59–71

    CAS  PubMed  Google Scholar 

  • Greenfield NJ, Huang YJ, Swapna GV, Bhattacharya A, Rapp B, Singh A, Montelione GT, Hitchcock-DeGregori SE (2006) Solution NMR structure of the junction between tropomyosin molecules: implications for actin binding and regulation. J Mol Biol 364:80–96

    Article  CAS  PubMed  Google Scholar 

  • Güth K, Potter JD (1987) Effect of rigor and cycling cross-bridges on the structure of troponin C and on the Ca2+ affinity of the Ca2+-specific regulatory sites in skinned rabbit psoas fibers. J Biol Chem 262:13627–13635

    PubMed  Google Scholar 

  • Hammell RL, Hitchcock-DeGregori SE (1997) The sequence of the alternatively spliced sixth exon of α-tropomyosin is critical for cooperative actin binding but not for interaction with troponin. J Biol Chem 272:22409–22416

    Article  CAS  PubMed  Google Scholar 

  • Haselgrove JC (1972) X-ray evidence for a conformational change in the actin-containing filaments of vertebrate strialed muscle. Cold Spring Harb Symp Quant Biol 37:341–352

    Google Scholar 

  • Hayley M, Chevaldina T, Mudalige WA, Jackman DM, Dobbin AD, Heeley DH (2008) Shark skeletal muscle tropomyosin is a phosphoprotein. J Muscle Res Cell Motil 29:101–107

    Article  CAS  PubMed  Google Scholar 

  • Heeley DH (1994) Investigation of the effects of phosphorylation of rabbit striated muscle αα-tropomyosin and rabbit skeletal muscle troponin T. Eur J Biochem 221:129–137

    Article  CAS  PubMed  Google Scholar 

  • Heeley DH, Moir AJ, Perry SV (1982) Phosphorylation of tropomyosin during development in mammalian striated muscle. FEBS Lett 146:115–118

    Article  CAS  PubMed  Google Scholar 

  • Heeley DH, Watson MH, Mak AS, Dubord P, Smillie LB (1989) Effect of phosphorylation on the interaction and functional properties of rabbit striated muscle αα-tropomyosin. J Biol Chem 264:2424–2430

    CAS  PubMed  Google Scholar 

  • Herzig JW, Peterson JW, Solaro RJ, Ruegg JC (1982) Phosphate and vanadate reduce the efficiency of the chemo-mechanical energy transformation in cardiac muscle. Adv Exp Med Biol 151:267–281

    CAS  PubMed  Google Scholar 

  • Hill TL, Eisenberg E, Greene L (1980) Theoretical model for the cooperative equilibrium binding of myosin subfragment 1 to the actin–troponin–tropomyosin complex. Proc Natl Acad Sci USA 77:3186–3190

    Article  CAS  PubMed  Google Scholar 

  • Huxley HE (1972) Structural changes in actin- and myosin-containing filaments during contraction. Cold Spring Harbor Symp Quant Biol 37:361–376

    Google Scholar 

  • Johnson P, Smillie LB (1977) Polymerizability of rabbit skeletal tropomyosin: effects of enzymic and chemical modifications. Biochemistry 16(10):2264–2269

    Article  CAS  PubMed  Google Scholar 

  • Kawai M (1986) The role of orthophosphate in crossbridge kinetics in chemically skinned rabbit psoas fibers as detected with sinusoidal and step length alterations. J Muscle Res Cell Motil 7:421–434

    Article  CAS  PubMed  Google Scholar 

  • Kawai M, Brandt PW (1976) Two rigor states in skinned crayfish single muscle fibers. J Gen Physiol 68:267–280

    Article  CAS  PubMed  Google Scholar 

  • Kawai M, Brandt PW (1977) Effectof MgATP on stiffness measured at two frequencies in Ca2+-activated muscle fibers. Proc Natl Acad Sci USA 74:4073–4075

    Article  CAS  PubMed  Google Scholar 

  • Kawai M, Brandt PW (1980) Sinusoidal analysis: a high resolution method for correlating biochemical reactions with physiological processes in activated skeletal muscles of rabbit, frog and crayfish. J Muscle Res Cell Motil 1:279–303

    Article  CAS  PubMed  Google Scholar 

  • Kawai M, Halvorson HR (1989) Role of MgATP and MgADP in the cross-bridge kinetics in chemically skinned rabbit psoas fibers. Study of a fast exponential process (C). Biophys J 55:595–603

    Article  CAS  PubMed  Google Scholar 

  • Kawai M, Halvorson HR (1991) Two step mechanism of phosphate release and the mechanism of force generation in chemically skinned fibers of rabbit psoas. Biophys J 59:329–342

    Article  CAS  PubMed  Google Scholar 

  • Kawai M, Ishiwata S (2006) Use of thin filament reconstituted muscle fibres to probe the mechanism of force generation. J Muscle Res Cell Motil 27:455–468

    Article  PubMed  Google Scholar 

  • Kawai M, Zhao Y (1993) Cross-bridge scheme and force per cross-bridge state in skinned rabbit psoas muscle fibers. Biophys J 65:638–651

    Article  CAS  PubMed  Google Scholar 

  • Kawai M, Saeki Y, Zhao Y (1993) Cross-bridge scheme and the kinetic constants of elementary steps deduced from chemically skinned papillary and trabecular muscles of the ferret. Circ Res 73:35–50

    CAS  PubMed  Google Scholar 

  • Kawai M, Lu X, Hitchcock-DeGregori SE, Stanton KJ, Wandling MW (2009) Tropomyosin period 3 is essential for enhancement of isometric tension in thin filament-reconstituted bovine myocardium. J Biophysics 2009:1–17

    Article  CAS  Google Scholar 

  • Kon T, Imamula K, Roberts AJ, Ohkura R, Knight PJ, Gibbons IR, Burgess SA, Sutoh K (2009) Helix sliding in the stalk coiled coil of dynein couples ATPase and microtubule binding. Nature Strct Mol Biol 16(3):326–333

    Google Scholar 

  • Kondo H, Ishiwata S (1976) Uni-directional growth of F-actin. J Biochem 79:159–171

    CAS  PubMed  Google Scholar 

  • Kress M, Huxley HE, Faruqi AR, Hendrix J (1986) Structural changes during activation of frog muscle studied by time-resolved X-ray diffraction. J Mol Biol 188:325–342

    Article  CAS  PubMed  Google Scholar 

  • Kurokawa H, Fujii W, Ohmi K, Sakurai T, Nonomur Y (1990) Simple and rapid purification of brevin. Biochem Biophys Res Commun 168:451–457

    Article  CAS  PubMed  Google Scholar 

  • Leger J, Bouvert P, Schwartz K, Swynghedauw B (1976) A comparative study of skeletal and cardiac tropomyosins; subunits, thiol group content and biological activities. Pflugers Archiv 362:271–277

    Article  CAS  PubMed  Google Scholar 

  • Lehrer SS (1975) Intramolecular crosslinking of tropomyosin via disulfide bond formation: evidence for chain register. Proc Nat Acad Sci USA 72:3377–3381

    Article  CAS  PubMed  Google Scholar 

  • Lewis WG, Smillie LB (1980) The amino acid sequence of rabbit cardiac tropomyosin. J Biol Chem 255:6854–6859

    CAS  PubMed  Google Scholar 

  • Lu X, Tobacman LS, Kawai M (2003) Effects of tropomyosin internal deletion Δ23Tm on isometric tension and the cross-bridge kinetics in bovine myocardium. J Physiol (Lond) 553:457–471

    Article  CAS  Google Scholar 

  • Lu X, Bryant MK, Bryan KE, Rubenstein PA, Kawai M (2005) Role of the N-terminal negative charges of actin in force generation and cross-bridge kinetics in reconstituted bovine cardiac muscle fibres. J Physiol 564:65–82

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Tobacman LS, Kawai M (2006) Temperature-dependence of isometric tension and cross-bridge kinetics of cardiac muscle fibers reconstituted with a tropomyosin internal deletion mutant. Biophys J 91:4230–4240

    Article  CAS  PubMed  Google Scholar 

  • Mak AS, Smillie LB (1981) Structural interpretation of the two-site binding of troponin on the muscle thin filament. J Mol Biol 149:541–550

    Article  CAS  PubMed  Google Scholar 

  • Mak A, Smillie LB, Bárány M (1978) Specific phosphorylation at serine-283 of alpha tropomyosin from frog skeletal and rabbit skeletal and cardiac muscle. Proc Natl Acad Sci (USA) 75:3588–3592

    Article  CAS  Google Scholar 

  • Mak AS, Smillie LB, Stewart GR (1980) A comparison of the amino acid sequences of rabbit skeletal muscle α-and β-tropomyosins. J Biol Chem 255:3647–3655

    CAS  PubMed  Google Scholar 

  • Maytum R, Bathe F, Konrad M, Geeves MA (2004) Tropomyosin exon 6b is troponin-specific and required for correct acto-myosin regulation. J Biol Chem 279:18203–18209

    Article  CAS  PubMed  Google Scholar 

  • McKillop DFA, Geeves MA (1993) Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament. Biphys J 65:693–701

    Article  CAS  Google Scholar 

  • Montarras D, Fiszman MY, Gros F (1981) Characterization of the tropomyosin present in various chick embryo muscle types and in muscle cells differentiated in vitro. J Biol Chem 256:4081–4086

    CAS  PubMed  Google Scholar 

  • Montarras D, Fiszman MY, Gros F (1982) Changes in tropomyosin during development of chick embryonic skeletal muscles in vivo and during differentiation of chick muscle cells in vitro. J Biol Chem 257(1):545–548

    CAS  PubMed  Google Scholar 

  • Montgomery K, Mak AS (1984) In vitro phosphorylation of tropomyosin by a kinase from chicken embryo. J Biol Chem 259:5555–5560

    CAS  PubMed  Google Scholar 

  • Murakami K, Stewart M, Nozawa K, Tomii K, Kudou N, Igarashi N, Shirakihara Y, Wakatsuki S, Yasunaga T, Wakabayashi T (2008) Structural basis for tropomyosin overlap in thin (actin) filaments and the generation of a molecular swivel by troponin T. Proc Nat Acad Sci USA 105:7200–7205

    Article  CAS  PubMed  Google Scholar 

  • Murray JM, Knox MK, Trueblood CE, Weber A (1982) Potentiated state of the tropomyosin actin filament and nucleotide-containing myosin subfragment 1. Biochemistry 21:906–915

    Article  CAS  PubMed  Google Scholar 

  • Muthuchamy M, Gripp IL, Grupp G, O’Toole BA, Kiert AB, Boivin GP, Neumann J, Wieczorek DF (1995) Molecular and physiological effects of overexpressing striated muscle β-tropomyosin in the adult murine heart. J Biol Chem 270:30593–30603

    Article  CAS  PubMed  Google Scholar 

  • Muthuchamy M, Boivin GP, Grupp IL, Wieczorek DF (1998) Beta-tropomyosin overexpression induces severe cardiac abnormalities. J Mol Cell Cardiol 30:1545–1557

    Article  CAS  PubMed  Google Scholar 

  • O’Connor CM, Balzer DR, Lazarides E (1979) Phosphorylation of subunit proteins of intermediate filaments from chicken muscle and nonmuscle cells. Proc Nat Acad Sci USA 76:819–823

    Article  PubMed  Google Scholar 

  • Ohtsuki I (1979) Molecular arrangement of troponin-T in the thin filament. J Biochem 86:491–497

    CAS  PubMed  Google Scholar 

  • Ookubo N, Ueno H, Ooi T (1975) Similarities and differences of the α and β components of tropomyosin. J Biochem 78:739–747

    CAS  PubMed  Google Scholar 

  • Palmiter KA, Kitada Y, Muthuchamy M, Wieczorek DF, Solaro RJ (1996) Exchange of beta- for alpha-tropomyosin in hearts of transgenic mice induces changes in thin filament response to Ca2+, strong cross-bridge binding, and protein phosphorylation. J Biol Chem 71:11611–11614

    Google Scholar 

  • Pearlstone JR, Smillie LB (1982) Binding of troponin-T fragments to several types of tropomyosin. Sensitivity to Ca2+ in the presence of troponin-C. J Biol Chem 257:10587–10592

    CAS  PubMed  Google Scholar 

  • Perry SV (1998) Troponin T: genetics, properties and function. J Muscle Res Cell Motil 19:575–602

    Article  CAS  PubMed  Google Scholar 

  • Perry SV (2001) Vertebrate tropomyosin: distribution, properties and function. J Muscle Res Cell Motil 22:5–49

    Article  CAS  PubMed  Google Scholar 

  • Potter JD (1982) Preparation of troponin and its subunits. Methods Enzymol 85(Pt B):241–263

    Article  CAS  PubMed  Google Scholar 

  • Rao VS, Marongelli EN, Guilford WH (2009) Phosphorylation of tropomyosin extends cooperative binding of myosin beyond a single regulatory unit. Cell Motil Cytoskeleton 66:10–23

    Article  CAS  PubMed  Google Scholar 

  • Ribolow H, Bárány M (1977) Phosphorylation of tropomyosin in live frog muscle. Arch Biochem Biophys 179:718–720

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez AG, Flint GV, Regnier M (2008) Effect of tropomyosin isoforms on actomyosin interaction in an in vitro motility assay. Biophys J 94:232A

    Google Scholar 

  • Rosol M, Lehman W, Craig R, Landis C, Butters C, Tobacman LS (2000) Three-dimensional reconstruction of thin filaments containing mutant tropoyosin. Biophys J 78:908–917

    Article  CAS  PubMed  Google Scholar 

  • Roy RK, Sreter FA, Sarkar S (1979) Changes in tropomyosin subunits and myosin light chains during development of chicken and rabbit striated muscles. Dev Biol 69:15–30

    Article  CAS  PubMed  Google Scholar 

  • Sano K, Maeda K, Oda T, Maeda Y (2000) The effect of single residue substitutions of serine 283 on the strength of head to tail interaction and actin binding properties of rabbit skeletal muscle α-tropomyosin. J Biochem (Tokyo) 127:1095–1102

    CAS  Google Scholar 

  • Schachat FH, Bronson DD, McDonald OB (1985) Heterogeneity of contractile proteins. A continuum of troponin-tropomyosin expression in mammalian skeletal muscle. J Biol Chem 260:1108–1113

    CAS  PubMed  Google Scholar 

  • Singh A, Hitchcock-DeGregori S (2006) Dual requirement for flexibility and specificity for binding of the coiled-coil tropomyosin to its target, actin. Structure 14:43–50

    Article  CAS  PubMed  Google Scholar 

  • Smillie LB (1982) Preparation and identification of alpha- and beta-tropomyosins. Methods Enzymol 85(Pt B):234–241

    Article  CAS  PubMed  Google Scholar 

  • Smillie L (1999) Tropomyosins: In: Kreis T, Vale R (eds) Guidebook to the cytoskeletal and motor proteins, 2nd edn. Oxford University Press, Oxford, pp 159–164

  • Spudich JA, Watt S (1971) The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin–troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem 246:4866–4871

    CAS  PubMed  Google Scholar 

  • Stapleton MT, Fuchsbauer CM, Allshire AP (1998) BDM drives protein dephosphorylation and inhibits adenine nucleotide exchange in cardiomyocytes. Am J Physiol 275:H1260–H1266

    CAS  PubMed  Google Scholar 

  • Stienen GJ, Roosemalen MC, Wilson MG, Elzinga G (1990) Depression of force by phosphate in skinned skeletal muscle fibers of the frog. Am J Physiol 259:C349–C357

    CAS  PubMed  Google Scholar 

  • Takagi Y, Shuman H, Goldman YE (2004) Coupling between phosphate release and force generation in muscle actomyosin. Philos Trans R Soc Lond B Biol Sci 359:1913–1920

    Article  CAS  PubMed  Google Scholar 

  • Tesi C, Colomo F, Piroddi N, Poggesi C (2002) Characterization of the cross-bridge force-generating step using inorganic phosphate and BDM in myofibrils from rabbit skeletal muscles. J Physiol (London) 541:187–199

    Article  CAS  Google Scholar 

  • Tobacman LS (1996) Thin filament-mediated regulation of cardiac contraction. Annu Rev Physiol 58:447–481

    Article  CAS  PubMed  Google Scholar 

  • Tobacman LS, Butters CA (2000) A new model of cooperative myosin-thin filament binding. J Biol Chem 275:27587–27593

    CAS  PubMed  Google Scholar 

  • Vahebi S, Ota A, Li M, Warren CM, de Tombe PP, Wang Y, Solaro RJ (2007) p38-MAPK induced dephosphorylation of α-tropomyosin is associated with depression of myocardial sarcomeric tension and ATPase activity. Circ Res 100:408–415

    Article  CAS  PubMed  Google Scholar 

  • Vibert P, Craig R, Lehman W (1997) Steric-model for activation of muscle thin filaments. J Mol Biol 266:8–14

    Article  CAS  PubMed  Google Scholar 

  • Wakabayashi K, Tokunaga M, Kohno I, Sugimoto Y, Hamanaka T, Takezawa Y, Wakabayashi T, Amemiya Y (1992) Small-angle synchrotron x-ray scattering reveals distinct shape changes of the myosin head during hydrolysis of ATP. Science 258:443–447

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Kawai M (2001) Effect of temperature on elementary steps of the cross-bridge cycle in rabbit soleus slow-twitch muscle fibres. J Physiol (Lond) 531:219–234

    Article  CAS  Google Scholar 

  • Wannenburg T, Heijne GH, Geerdink JH, Van Den Dool HW, Janssen PM, De Tombe PP, Wannenburg et al (2000) Cross-bridge kinetics in rat myocardium: effect of sarcomere length and calcium activation. Am J Physiol Heart Circ Physiol 279:H779–H790

    CAS  PubMed  Google Scholar 

  • Waurick R, Knapp J, Van Aken H, Boknik P, Neumann J, Schmitz W (1999) Effect of 2, 3-butanedione monoxime on force of contraction and protein phosphorylation in bovine smooth muscle. Naunyn Schmiedebergs Arch Pharmacol 359:484–492

    Article  CAS  PubMed  Google Scholar 

  • Wolska BM, Keller RS, Evans CC, Palmiter KA, Phillips RM, Muthuchamy M, Oehlenschlager J, Wieczorek DF, de Tombe PP, Solaro RJ (1999) Correlation between myofilament response to Ca2+ and altered dynamics of contraction and relaxation in transgenic cardiac cells that express β-tropomyosin. Circ Res 84:745–751

    CAS  PubMed  Google Scholar 

  • Xu C, Craig R, Tobacman L, Horowitz R, Lehman W (1999) Tropomyosin positions in regulated thin filaments revealed by cryoelectron microscopy. Biophys J 77:985–992

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Kawai M (1996) Inotropic agent EMD-53998 weakens nucleotide and phosphate binding to cross-bridges in porcine myocardium. Am J Physiol 271 (Heart Circ Physiol 40):H1394–H1406

Download references

Acknowledgements

The authors would like to thank Ms. Mary K. Bryant for her excellent technical assistance in reconstitution experiments, and Dr. Sathivel Chinathambi for his help in 2D SDS-PAGE. This work was supported by grants from NIH HL70041 and AHA 0850184Z to MK, AHA Postdoctoral Fellowships 0320083Z and 0520084Z to XL, and the Canadian Institutes of Health Research (C.I.H.R.) and the Heart and Stroke Foundation of Canada to LBS. The contents of this work are solely the responsibility of the authors and do not necessarily represent the official view of awarding organizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masataka Kawai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, X., Heeley, D.H., Smillie, L.B. et al. The role of tropomyosin isoforms and phosphorylation in force generation in thin-filament reconstituted bovine cardiac muscle fibres. J Muscle Res Cell Motil 31, 93–109 (2010). https://doi.org/10.1007/s10974-010-9213-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-010-9213-x

Keywords

Navigation