Log in

Optimization of cementitious composite for heavyweight concrete preparation using conduction calorimetry

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present work investigates the hydration heat of different cement composites by means of conduction calorimetry to optimize the composition of binder in the design of heavyweight concrete as biological shielding. For this purpose, Portland cement CEM I 42.5 R was replaced by a different portion of supplementary cementitious materials (blast furnace slag, metakaolin, silica fume/limestone) at 75%, 65%, 60%, 55%, and 50% levels to obtain low hydration heat lower than 250 j g−1. All ingredients were analyzed by energy dispersive X-ray fluorescence (EDXRF) and nuclear activation analysis (NAA) to assess the content of major elements and isotopes. A mixture of two high-density aggregates (barite and magnetite) was used to prepare three heavyweights concretes with compressive strength exceeding 45 MPa and bulk density ranging between 3400 and 3500 kg m−3. After a short period of volume expansion (up to 4 h), a slight shrinkage (max. 0.3°/°°) has been observed. Also, thermophysical properties (thermal conductivity, volumetric specific heat, thermal diffusivity) and other properties were determined. The results showed that aggregate content and not binder is the main factor influencing the engineering properties of heavyweight concretes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ouda AS. Development of high-performance heavy density concrete using different aggregates for Gamma-Ray shielding. Prog Nucl Energy. 2015;79:48–55. https://doi.org/10.1016/j.pnucene.2014.11.009.

    Article  CAS  Google Scholar 

  2. Mostofinejad D, Reisi M, Shirani A. Mix design effective parameters on gamma-ray attenuation coefficient and strength of normal and heavyweight concrete. Constr Build Mater. 2012;28:224–9. https://doi.org/10.1016/j.conbuildmat.2011.08.043.

    Article  Google Scholar 

  3. İlker Bekir Topçu. Properties of heavyweight concrete produced with barite. Cem Concr Res. 2003;33:815–22. https://doi.org/10.1016/S0008-8846(02)01063-3.

    Article  CAS  Google Scholar 

  4. Kilincarslan S, Akkurt I, Basyigit C. The effect of barite rate on some physical and mechanical properties of concrete. Mater Sci Eng A. 2006;424:83–6. https://doi.org/10.1016/j.msea.2006.02.033.

    Article  CAS  Google Scholar 

  5. Khalaf MA, Ban CC, Ramli M. The constituents, properties and application of heavyweight concrete: a review. Constr Build Mater. 2019;215:73–89. https://doi.org/10.1016/j.conbuildmat.2019.04.146.

    Article  CAS  Google Scholar 

  6. Huang Y, Liu G, Huang S, Rao R, Hu C. Experimental and finite element investigations on the temperature field of a massive bridge pier caused by the hydration heat of concrete. Constr Build Mater. 2018;192:240–52. https://doi.org/10.1016/j.conbuildmat.2018.10.128.

    Article  Google Scholar 

  7. Xu Q, Ruiz JM, Hu J, Wang K, Rasmussen RO. Modeling hydration properties and temperature developments of early-age concrete pavement using calorimetry tests. Thermochim Acta. 2011;512(1–2):76–85. https://doi.org/10.1016/j.tca.2010.09.003.

    Article  CAS  Google Scholar 

  8. Chu I, Kwon SH, Amin MN, Kim JK. Estimation of temperature effects on autogenous shrinkage of concrete by a new prediction model. Constr Build Mater. 2012;35:171–82. https://doi.org/10.1016/j.conbuildmat.2012.03.005.

    Article  Google Scholar 

  9. Duan Y, Zhang C, Chang X. Mesoscopic numerical simulation of temperature crack with non-uniform temperature distribution in concrete. Appl Mech Mater. 2014;477–478:1014–8. https://doi.org/10.4028/www.scientific.net/AMM.477-478.1014.

    Article  Google Scholar 

  10. Palou MT, Kuzielova E, Novotny R, Šoukal F, Žemlička M. Blended cements consisting of Portland cement–slag–silica fume–metakaolin system. J Therm Anal Calorim. 2016;125:1025–34. https://doi.org/10.1007/s10973-016-5399-5.

    Article  CAS  Google Scholar 

  11. Palou MT, Kuzielova E, Žemlička M, Novotny R, Másilko J. The effect of metakaolin upon the formation of ettringite in metakaolin–lime–gypsum ternary systems. J Therm Anal Calorim. 2018;133:77–86. https://doi.org/10.1007/s10973-017-6885-0.

    Article  CAS  Google Scholar 

  12. Kuzielova E, Žemlička M, Novotny R, Palou MT. Simultaneous effect of silica fume, metakaolin and ground granulated blast-furnace slag on the hydration of multicomponent cementitious binders. J Therm Anal Calorim. 2019;136:1527–37. https://doi.org/10.1007/s10973-018-7813-7.

    Article  CAS  Google Scholar 

  13. Park K, Kim HT, Kwon TH, Choi E. Effect of neutron irradiation on response of reinforced concrete members for nuclear power plants. Nucl Eng Des. 2016;310:15–26. https://doi.org/10.1016/j.nucengdes.2016.09.034.

    Article  CAS  Google Scholar 

  14. Sikora P, Elrahman MA, Horszczaruk E, Brzozowski P, Stephan D. Incorporation of magnetite powder as a cement additive for improving thermal resistance and gamma-ray shielding properties of cement-based Composites. Constr Build Mater. 2019;204:113–21. https://doi.org/10.1016/j.conbuildmat.2019.01.161.

    Article  CAS  Google Scholar 

  15. Jaskulski R, Glinicki MA, Kubissa W, Dabrowski M. Application of a non-stationary method in determination of the thermal properties of radiation shielding concrete with heavy and hydrous aggregate. Int J Heat Mass Trans. 2019;130:882–92. https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.050.

    Article  CAS  Google Scholar 

  16. Lee H-S, Kwon S-J. Effects of magnetite aggregate and steel powder on thermal conductivity and porosity in concrete for nuclear power plant, Research Article. Adv Mater Sci Eng. 2016;9526251:8. https://doi.org/10.1155/2016/9526251.

    Article  CAS  Google Scholar 

  17. Krishnaiah S, Singh DN. Determination of thermal properties of some supplementary cementing materials used in cement and concrete. Constr Build Mater. 2006;20:193–8. https://doi.org/10.1016/j.conbuildmat.2004.10.001.

    Article  Google Scholar 

  18. Zhang W, Min H, Gu X, ** Y, **ng Y. Mesoscale model for thermal conductivity of concrete. Constr Build Mater. 2015;98:8–16. https://doi.org/10.1016/j.conbuildmat.2015.08.106.

    Article  Google Scholar 

  19. Asadi I, Shafigh P, Abu Hassan ZFB, Mahyuddin NB. Thermal conductivity of concrete—a review. J Build Eng. 2018;1:2. https://doi.org/10.1016/j.jobe.2018.07.002.

    Article  Google Scholar 

  20. Demirboga R, Turkmen I, Karakoc MB. Thermo-mechanical properties of concrete containing high-volume mineral admixtures. Build Environ. 2007;42:349–54. https://doi.org/10.1016/j.buildenv.2005.08.027.

    Article  Google Scholar 

  21. Demirboga R. Influence of mineral admixtures on thermal conductivity and compressive strength of mortar. Energy Build. 2003;35:189–92. https://doi.org/10.1016/S0378-7788(02)00052-X.

    Article  Google Scholar 

  22. Szentmiklósi L, Párkányi D, Sziklai-László I. Upgrade of the Budapest neutron activation analysis laboratory. J Radioanal Nucl Chem. 2016;309:91–9. https://doi.org/10.1007/s10967-016-4776-7.

    Article  CAS  Google Scholar 

  23. Dragomirová J, Palou M. Development of high-compressive heavyweight concrete based on Portland cement and supplementary cementitious materials. Mater Sci Forum. 2019;955:44–9. https://doi.org/10.4028/www.scientific.net/MSF.955.44.

    Article  Google Scholar 

  24. Dragomirová J, Palou MT, Novotný R. Effect of heavy aggregates on concrete shrinkage. In: Proc. of 6th ICBM: international conference binders and materials“Brno 6th Dec. 2018, p. 44–49, ISBN 978-80-214-5567-2.

  25. EN 1992-1-1 EuroCode 2: Designing of concrete structures—Part 1-1: General regulations for civil engineering.

  26. Carlos A. León y León. New perspectives in mercury porosimetry. ADV COLLOID INTERFAC. 1998:76-77;341-372. https://www.sciencedirect.com/journal/advances-in-colloid-and-interface-science/vol/76/suppl/C.

  27. Kovler K. Why sealed concrete swells? Am Concr Inst Mater J. 1996;93(4):334–40.

    CAS  Google Scholar 

  28. Kim KH, Jeon SE, Kim JK, Yang S. An experimental study on thermal conductivity of concrete. Cement Concrete Res. 2003;33:363–71. https://doi.org/10.1016/S0008-8846(02),00965-1.

    Article  CAS  Google Scholar 

  29. Khan MI. Factors affecting the thermal properties of concrete and applicability of its prediction models. Build Environ. 2002;37:607–14. https://doi.org/10.1016/S0360-1323(01)00061-0.

    Article  Google Scholar 

  30. Bouguerra A, Laurent JP, Goual MS, Queneudec M. The measurement of the thermal conductivity of solid aggregates using the transient plane source technique. J Phys D Appl Phys. 1997;30:2900–4. https://doi.org/10.1088/0022-3727/30/20/018.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by V4-Kórea Joint Research Program on Chemistry and Chemical Engineering under the auspices of Slovak Academy of Sciences and is a part of the project No. 127102 that has been implemented with the support from the National Research, Development and Innovation Fund of Hungary, financed under the NN_17 V4-Korea funding scheme. Authors express thankful for partial financial support from APVV–15–0631, APVV-SK-KR-18-0006 and Slovak Grant Agency VEGA No. 2/0097/17.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin T. Palou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dragomirová, J., Palou, M.T., Kuzielová, E. et al. Optimization of cementitious composite for heavyweight concrete preparation using conduction calorimetry. J Therm Anal Calorim 142, 255–266 (2020). https://doi.org/10.1007/s10973-020-09530-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09530-0

Keywords

Navigation