Log in

Conjugate natural heat transfer scrutiny in differentially heated cavity partitioned with a conducting solid using the lattice Boltzmann method

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present paper, we numerically investigated the two-dimensional conjugate heat transfer problems in a unitary computational domain containing both the solid and fluid regions. The physical problem configuration consists of two adiabatic horizontal walls of finite thickness and two vertical walls; the left one is maintained at hot temperature Th and the right one is maintained at cold temperature Tc. The lattice Boltzmann method (LBM) based on the BGK model has been used to simulate laminar natural convection in the partitioned air-filled cavity with a heat-conducting solid. In the interface boundaries of the heat-conducting solid, the continuity of temperature and heat transfer is considered. A series of numerical simulation is carried out over a wide range of the Rayleigh number (Ra = 103–106), the thermal conductivity ratio kr and the solid partition thickness (δ = 1–95℅) and its horizontal position. The results show that the partition reduces the heat transfer rate in the cavity. For a centered partition (Xs = 0.5), the average Nusselt number decreases almost linearly with partition thickness for δ ≤ 0.45; however, it increases for δ ≥ 0.45 due to the confinement in the thin fluid regions. For Ra = 105, the heat transfer rate decreases with the partition position until a critical value close to 0.325 and rises slightly until Xs = 0.5. The critical position value decreases with the Ra number increase and it is close to 0.2 for Ra = 106 where Nu = 3.766. The heat transfer rate is enhanced with the increase in thermal conductivity. Correlations of the average Nusselt numbers are obtained as a function of Rayleigh number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Abbreviations

c :

Lattice speed

c s :

Lattice speed of sound

c i :

Discrete particle speed

f :

Density distribution functions

f eq :

ρ-equilibrium distribution functions

g :

Temperature distribution functions

g eq :

θ-equilibrium distribution functions

ω i :

Weight factor

k f :

Fluid thermal conductivity (W m−1 K−1)

k s :

Solid thermal conductivity (W m−1 K−1)

k r :

Thermal conductivity ratio

m, n :

Lattice cell numbers

Nu :

Local Nusselt number = ∂θ/∂X

\(\overline{Nu}\) :

Average Nusselt number =  \(\int_{Y = 0}^{1} {Nu\,{\text{d}}Y}\)

p :

Pressure (Pa)

Ra :

Rayleigh number = Ra = (Th − Tc)W3/αυ

Pr :

Prandtl number = υ/α

T :

Temperature (K)

T c :

Temperature of the cold wall (K)

T h :

Temperature of the hot wall (K)

u, v :

Dimensional velocities (m s−1)

U, V :

Non-dimensional velocities

H :

Height of the cavity (m)

W :

Width of the cavity (m)

x, y :

Coordinates system (–)

X, Y :

Non-dimensional Cartesian coordinates

X s :

Position of the partition

t :

Time (s)

α :

Thermal diffusivity (m2 s−1)

β :

Coefficient of thermal expansion (K−1)

Δx :

Lattice spacing

Δt :

Time increment (s)

μ :

Dynamic viscosity (kg m−1 s−1)

ρ :

Fluid density (kg m−3)

τ α :

Relaxation time for temperature (m2 s−1)

τ υ :

Relaxation time for flow (m2 s−1)

θ :

Non-dimensional temperature

υ :

Kinematic viscosity (m2 s−1)

δ :

Thickness of the conducting body (m)

τ :

Dimensionless time

c:

Cold surface

f:

Fluid

h:

Hot surface

s:

Solid

References

  1. Jajja SA, Ali W, Ali HM. Multiwalled carbon nanotube nanofluid for thermal management of high heat generating computer processor. Heat Transf Asian Res. 2014;43(7):653–66.

    Google Scholar 

  2. Jajja SA, Ali W, Ali HM, Ali AM. Water cooled minichannel heat sinks for microprocessor cooling: effect of fin spacing. Appl Therm Eng. 2014;64(1–2):76–82.

    CAS  Google Scholar 

  3. Siddiqui AM, Arshad W, Ali HM, Ali M, Nasir MA. Evaluation of nanofluids performance for simulated microprocessor. Therm Sci. 2017;21(5):2227–36.

    Google Scholar 

  4. Arshad W, Ali HM. Graphene nanoplatelets nanofluids thermal and hydrodynamic performance on integral fin heat sink. Int J Heat Mass Transf. 2017;107:995–1001.

    CAS  Google Scholar 

  5. Arshad W, Ali HM. Experimental investigation of heat transfer and pressure drop in a straight minichannel heat sink using TiO2 nanofluid. Int J Heat Mass Transf. 2017;110:248–56.

    CAS  Google Scholar 

  6. Ali HM, Azhar MD, Saleem M, Saeed QS, Saieed A. Heat transfer enhancement of car radiator using aqua based magnesium oxide nanofluids. Therm Sci. 2015;19(6):2039–48.

    Google Scholar 

  7. Ali HM, Ali H, Liaquat H, Maqsood HTB, Nadir MA. Experimental investigation of convective heat transfer augmentation for car radiator using ZnO–water nanofluids. Energy. 2015;84(1):317–24.

    CAS  Google Scholar 

  8. Fiebig M, Grosse-Gorgemann A, Chen Y, Mitra N. Conjugate heat transfer of a finned tube part A: heat transfer behavior and occurrence of heat transfer reversal. Numer Heat Transf A Appl. 1995;28(2):133–46.

    Google Scholar 

  9. Nigen J, Amon C. Time-dependent conjugate heat transfer characteristics of self-sustained oscillatory flows in a grooved channel. J Fluids Eng. 1994;116(3):499–507.

    Google Scholar 

  10. Ha MY, Jung MJ. A numerical study on three-dimensional conjugate heat transfer of natural convection and conduction in a differentially heated cubic enclosure with a heat-generating cubic conducting body. Int J Heat Mass Transf. 2000;43(23):4229–48.

    Google Scholar 

  11. Patankar S (ed). A numerical method for conduction in composite materials, flow in irregular geometries and conjugate heat transfer. In: Proceedings 6th international heat transfer conference; 1978.

  12. Juncu G. The influence of the physical properties ratios on the conjugate heat transfer from a drop. Heat Mass Transf. 1999;35(3):251–7.

    CAS  Google Scholar 

  13. Djebali R, Pateyron B, ElGanaoui M. A lattice Boltzmann-based study of plasma sprayed particles behaviours. Comput Mater Contin. 2011;25(2):159–75.

    Google Scholar 

  14. Djebali R, Ganaoui ME, Pateyron B. A lattice Boltzmann-based investigation of powder in-flight characteristics during APS process, part I: modelling and validation. Prog Comput Fluid Dyn. 2012;12(4):270–8.

    Google Scholar 

  15. Djebali R, Pateyron B, El Ganaoui MA. Lattice Boltzmann based investigation of powder in-flight characteristics during APS process, part II: effects of parameter dispersions at powder injection. Surf Coat Technol. 2013;220:157–63.

    CAS  Google Scholar 

  16. Djebali R. Investigating plasma jets behavior using axisymmetric lattice Boltzmann model under temperature dependent viscosity. Commun Comput Phys. 2014;15(3):677–91.

    Google Scholar 

  17. Lu J, Lei H, Dai C. A simple difference method for lattice Boltzmann algorithm to simulate conjugate heat transfer. Int J Heat Mass Transf. 2017;114:268–76.

    Google Scholar 

  18. Mohamad A, Tao Q, He Y, Bawazeer S. Treatment of transport at the interface between multilayers via the lattice Boltzmann method. Numer Heat Transf B Fundam. 2015;67(2):124–34.

    CAS  Google Scholar 

  19. Koca A, Oztop HF, Varol Y, Mobedi M. Using of Bejan’s heatline technique for analysis of natural convection in a divided cavity with differentially changing conductive partition. Numer Heat Transf A Appl. 2013;64(4):339–59.

    CAS  Google Scholar 

  20. Karani H, Huber C. Lattice Boltzmann formulation for conjugate heat transfer in heterogeneous media. Phys Rev E. 2015;91(2):023304.

    Google Scholar 

  21. Benachour E, Draoui B, Imine B, Asnoune K. Numerical simulation of conjugate convection combined with the thermal conduction using a polynomial interpolation method. Adv Mech Eng. 2017;9(5):1–7.

    Google Scholar 

  22. Khatamifar M, Lin W, Armfield S, Holmes D, Kirkpatrick M. Conjugate natural convection heat transfer in a partitioned differentially-heated square cavity. Int Commun Heat Mass Transf. 2017;81:92–103.

    CAS  Google Scholar 

  23. Ho C, Yih Y. Conjugate natural convection heat transfer in an air-filled rectangular cavity. Int Commun Heat Mass Transf. 1987;14(1):91–100.

    CAS  Google Scholar 

  24. Saeid NH. Conjugate natural convection in a vertical porous layer sandwiched by finite thickness walls. Int Commun Heat Mass Transf. 2007;34(2):210–6.

    Google Scholar 

  25. Wang J, Wang M, Li Z. A lattice Boltzmann algorithm for fluid–solid conjugate heat transfer. Int J Therm Sci. 2007;46(3):228–34.

    CAS  Google Scholar 

  26. Seddiq M, Maerefat M, Mirzaei M. Modeling of heat transfer at the fluid–solid interface by lattice Boltzmann method. Int J Therm Sci. 2014;75:28–35.

    Google Scholar 

  27. Souayeh B, Ben-Cheikh N, Ben-Beya B. Effect of thermal conductivity ratio on flow features and convective heat transfer. Particul Sci Technol. 2017;35(5):565–74.

    CAS  Google Scholar 

  28. Ben-Nakhi A, Chamkha AJ. Effect of length and inclination of a thin fin on natural convection in a square enclosure. Numer Heat Transf. 2006;50(4):381–99.

    Google Scholar 

  29. Ben-Nakhi A, Chamkha AJ. Conjugate natural convection in a square enclosure with inclined thin fin of arbitrary length. Int J Therm Sci. 2007;46(5):467–78.

    Google Scholar 

  30. Ismael MA, Chamkha AJ. Conjugate natural convection in a differentially heated composite enclosure filled with a nanofluid. J Porous Media. 2015;18(7):699–716.

    Google Scholar 

  31. Chamkha AJ, Hussain SH, Abd-Amer QR. Mixed convection heat transfer of air inside a square vented cavity with a heated horizontal square cylinder. Numer Heat Transf A Appl. 2011;59(1):58–79.

    CAS  Google Scholar 

  32. Chamkha AJ, Ismael MA. Conjugate heat transfer in a porous cavity heated by a triangular thick wall. Numer Heat Transf A Appl. 2013;63(2):144–58.

    Google Scholar 

  33. Chamkha AJ, Ismael MA. Natural convection in differentially heated partially porous layered cavities filled with a nanofluid. Numer Heat Transf A Appl. 2014;65(11):1089–113.

    CAS  Google Scholar 

  34. Ismael MA, Armaghani T, Chamkha AJ. Conjugate heat transfer and entropy generation in a cavity filled with a nanofluid-saturated porous media and heated by a triangular solid. J Taiwan Inst Chem Eng. 2016;59:138–51.

    CAS  Google Scholar 

  35. Bhatnagar PL, Gross EP, Krook M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys Rev. 1954;94(3):511–25.

    CAS  Google Scholar 

  36. Djebali R, El Ganaoui M. Assessment and computational improvement of thermal lattice Boltzmann models based benchmark computations. Comput Model Eng Sci. 2011;71(3):179–202.

    Google Scholar 

  37. Djebali R, El Ganaoui M, Pateyron B, Sammouda H. Simulation and modeling of turbulent plasma jet based on axisymetric LBGK model. Defect Diffus Forum. 2011;312–315:1167–71.

    Google Scholar 

  38. Abbassi MA, Safaei MR, Djebali R, et al. LBM simulation of free convection in a nanofluid filled incinerator containing a hot block. Int J Mech Sci. 2018;144:172–85.

    Google Scholar 

  39. Djebali R, Elganaoui M, Jaouabi A, Pateyron B. Scrutiny of spray jet and impact characteristics under dispersion effects of powder injection parameters in APS process. Int J Therm Sci. 2016;100:229–39.

    Google Scholar 

  40. Djebali R, Abbassi MA, Jaouabi A. A lattice Boltzmann model for the simulation of flows and heat transfer at very high temperature: a dynamic framework of conversion to physical space with test cases. In: Driss Z, Necib B, Zhang HC, editors. Thermo-mechanics applications and engineering technology. Cham: Springer; 2018. p. 151–69. https://doi.org/10.1007/978-3-319-70957-4_7.

    Google Scholar 

  41. Mohamad A, Kuzmin A. A critical evaluation of force term in lattice Boltzmann method, natural convection problem. Int J Heat Mass Transf. 2010;53(5–6):990–6.

    Google Scholar 

  42. Bairi A. Nusselt–Rayleigh correlations for design of industrial elements: experimental and numerical investigation of natural convection in tilted square air filled enclosures. Energy Convers Manag. 2008;49(4):771–82.

    Google Scholar 

  43. Djebali R, El Ganaoui M, Sammouda H. Investigation of a side wall heated cavity by using lattice Boltzmann method. Eur J Comput Mech/Revue Européenne de Mécanique Numérique. 2009;18(2):217–38.

    Google Scholar 

  44. Dixit H, Babu V. Simulation of high Rayleigh number natural convection in a square cavity using the lattice Boltzmann method. Int J Heat Mass Transf. 2006;49(3–4):727–39.

    Google Scholar 

  45. Kuznik F, Vareilles J, Rusaouen G, Krauss G. A double-population lattice Boltzmann method with non-uniform mesh for the simulation of natural convection in a square cavity. Int J Heat Fluid Flow. 2007;28(5):862–70.

    CAS  Google Scholar 

  46. Moumni H, Welhezi H, Djebali R, Sediki E. Accurate finite volume investigation of nanofluid mixed convection in two-sided lid driven cavity including discrete heat sources. Appl Math Model. 2015;39(14):4164–79.

    Google Scholar 

  47. Hortmann M, Perić M, Scheuerer G. Finite volume multigrid prediction of laminar natural convection: benchmark solutions. Int J Numer Meth Fluids. 1990;11(2):189–207.

    Google Scholar 

  48. de Vahl Davis G. Natural convection of air in a square cavity: a bench mark numerical solution. Int J Numer Methods Fluids. 1983;3(3):249–64.

    Google Scholar 

  49. Khanafer K, Vafai K, Lightstone M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf. 2003;46(19):3639–53.

    CAS  Google Scholar 

  50. Mobedi M. Conjugate natural convection in a square cavity with finite thickness horizontal walls. Int Commun Heat Mass Transf. 2008;35(4):503–13.

    CAS  Google Scholar 

  51. Kalita JC, Dalal D, Dass AK. Fully compact higher-order computation of steady-state natural convection in a square cavity. Phys Rev E. 2001;64(6):1–13.

    Google Scholar 

  52. COMSOL Multiphysics Reference Manual, version 4.3, COMSOL, Inc, www.comsol.com.

  53. Kahveci K. Buoyancy driven heat transfer of nanofluids in a tilted enclosure. J Heat Transf. 2010;132(6):1–12.

    Google Scholar 

  54. Karayiannis T, Ciofalo M, Barbaro G. On natural convection in a single and two zone rectangular enclosure. Int J Heat Mass Transf. 1992;35(7):1645–57.

    CAS  Google Scholar 

  55. Duxbury D. An interferometric study of natural convection in enclosed plane air layers with complete and partial central vertical divisions: University of Salford; 1979.

  56. Nishimura T, Shiraishi M, Nagasawa F, Kawamura Y. Natural convection heat transfer in enclosures with multiple vertical partitions. Int J Heat Mass Transf. 1988;31(8):1679–86.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ferhi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferhi, M., Djebali, R., Abboudi, S. et al. Conjugate natural heat transfer scrutiny in differentially heated cavity partitioned with a conducting solid using the lattice Boltzmann method. J Therm Anal Calorim 138, 3065–3088 (2019). https://doi.org/10.1007/s10973-019-08276-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08276-8

Keywords

Navigation