Log in

Thermal hazard assessment of TNT and DNAN under adiabatic condition by using accelerating rate calorimeter (ARC)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal decomposition behaviors of 2,4,6-Trinitrotoluene (TNT) and 1-methoxy-2,4-dinitro-benzene (DNAN) were studied by using a NETSCH company accelerating rate calorimetry. Hazard indicators such as onset temperature, adiabatic temperature rise, initial self-heat temperature, maximum self-heating rate, and time-to-maximum temperature rise rate have been determined directly. The kinetic parameters, such as the activation energy (E a) and the pre-exponential factor (A) were studied from the measured self-heating rate data by assuming order reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Φ :

Thermal inertia factor

T 0 :

Initial self-heat temperature (°C)

T f :

Final decomposition temperature (°C)

ΔT ad :

Adiabatic temperature rise (°C)

m 0 :

Initial temperature rise rate (°C min−1)

m m :

Maximum temperature rise rate (°C min−1)

T m :

Temperature of maximum temperature rise rate (°C)

θ m :

Time of maximum temperature rise rate (min)

E a :

The apparent activation energy (kJ mol−1)

R :

The gas constant

A :

Pre-exponential factor

References

  1. Agrawal JP, Hodgson RD. Organic chemistry of explosives. Chichester: John Wiley & Sons; 2007.

    Google Scholar 

  2. Akhavan JA. Chemistry of explosives. Cambridge: The Royal Society of Chemistry; 1998.

    Google Scholar 

  3. Pasupala R, DiliP MB, Girish MG, Surya PT, Arun KS. Review on melt cast explosives. Propellants Explos Pyrotech. 2011;36:393–403.

    Article  Google Scholar 

  4. Beanard PW, Fouche FC, Bezuidenhout HC. Less sensitive TNT-based Formulations, Australian Explosive Ordnance Symposium (parari’ 1997), Canberra, Australia, November, 1997; 12–4.

  5. Nicolich S, Niles J, Ferlazzo P, Doll D, Braithwaite P, Rausmussen N, Ray M, Gunger M, Spencer A. Recent developments in reduced sensitivity melt pour explosives. In: 34th int. Annual Conference of ICT Karlsruhe, Germany, 2003; 24–7.

  6. Arthur P, Craig W. Ageing of Australian DNAN based melt-cast insensitive explosives. Propellants Exlos Pyrotech. 2016;41:555–61.

    Article  Google Scholar 

  7. Zhang GY, ** SH, Li LJ, Li YK, Wang DQ, Li W, Zhang T, Shu QH. Thermal hazard assessment of 4,10-dinitro-2,6,8,12-tetraoxa-4,10-diazaisowurtzitane (TEX) with accelerating rate calorimeter (ARC). J Therm Anal Calorim. 2016;126:467–71.

    Article  CAS  Google Scholar 

  8. Zhang GY, ** SH, Li LJ, Li ZH, Shu QH, Wang DQ, Zhang B, Li YK. Evaluation of thermal Hazards and thermo-kinetic parameters of 3-amino-4-amidoximinofurazan by ARC and TG. J Therm Anal Calorim. 2016;126:1223–30.

    Article  CAS  Google Scholar 

  9. Zhu JP, ** SH, Yu YH, Zhang CY, Li LJ, Chen SS, Shu QH. Evaluation of thermal hazards and thermo-kinetic parameters of N,N′-dinitro-4,4′-azo-Bis (1,2,4-triazolone) (DNZTO). Thermochim Acta. 2016;623:58–64.

    Article  CAS  Google Scholar 

  10. Zhang CY, ** SH, Chen SS, Li LJ, Zhou C, Zhan Y, Shu QH. Thermal behavior and thermo-kinetic studies of 5,5′-bistetrazole-1,1′-diolate (1,1-BTO). J Therm Anal Calorim. 2017;129:1265–70.

    Article  CAS  Google Scholar 

  11. Townsend DI, Tou JC. Thermal hazard evaluation by an accelerating rate calorimeter. Thermochim Acta. 1980;37:1–30.

    Article  CAS  Google Scholar 

  12. Tou JC, Whiting LF. The thermokinetic performance of an accelerating rate calorimeter. Thermochim Acta. 1981;48:21–42.

    Article  CAS  Google Scholar 

  13. Lu KT, Yang CC, Lin PC. The criteria of critical runaway and stable temperatures of catalytic decomposition of hydrogen peroxide in the presence of hydrochloric acid. J Hazard Mater. 2006;135:319–27.

    Article  CAS  Google Scholar 

  14. Fu ZM, Koseki H, Iwata Y. Investigation on thermal stability of flavianic acid disodium salt. J Loss Prevent Proc. 2009;22:477–83.

    Article  CAS  Google Scholar 

  15. Liu HP, Gu LY, Zhu P, Liu ZR, Zhou B. Effect of micro amount of Fe3+ on thermal explosion decomposition of hydrogen peroxide. Fire Sci Tech. 2012;31:554–7.

    CAS  Google Scholar 

  16. Zuo YF, Chang K, Chen J, Cheng KM, Wang XF, Fang YX. Characteristics of thermal decomposition of TEX. Chin J Energ Mater. 2006;14:387–8.

    Google Scholar 

  17. Liu RH, Chen WH, Hu YT. Safety principle and assessment technology for dangerous chemicals. Bei**g: Chemical Industry Press; 2004.

    Google Scholar 

  18. Zhang Z, Jiang H, Huang P. Study of hydrogen peroxide explosion mechanism and its prevention measures. J Saf Environ. 2007;7:108–10.

    CAS  Google Scholar 

  19. Liu Y, Yang Q, Chen LP, He ZQ, Lu Y, Chen WH. Thermal sensitivity of energetic materials characterized by accelerating rate calorimeter (ARC). Chin J Energ Mater. 2011;19:656–60.

    Google Scholar 

Download references

Acknowledgements

Funding was provided by the Technology Innovation Program of Bei**g Institute of Technology of China (Grant No. 2017CX10003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghai Shu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., **, S., Ji, J. et al. Thermal hazard assessment of TNT and DNAN under adiabatic condition by using accelerating rate calorimeter (ARC). J Therm Anal Calorim 131, 89–93 (2018). https://doi.org/10.1007/s10973-017-6665-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6665-x

Keywords

Navigation