Log in

Kinetic study for solid-state degradation of mental disorder therapeutic agents

Amitriptyline, desipramine and imipramine

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper describes the thermal investigations and kinetic analysis regarding the solid-state degradation of three compounds used as mental disorder therapeutic agents (antidepressants), namely amitriptyline, desipramine and imipramine. The study was carried according to ICTAC 2000 recommendations, by using three isoconversional methods, namely Flynn–Wall–Ozawa, Kissinger–Akahira–Sunose and Friedman. The differential method of Friedman indicated multistep degradation, which was later confirmed by the nonparametric kinetic method (NPK). NPK method showed that all three tricyclic antidepressants are degraded by two processes. In terms of apparent activation energies for decomposition, the NPK method indicated 123.4 kJ mol−1 for imipramine, 112.3 kJ mol−1 for desipramine and 82.9 kJ mol−1 for amitriptyline, and the results are in good agreement with the ones suggested by isoconversional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

α :

Conversion degree

T :

Temperature

f(α):

Differential conversion function

g(α):

Integral conversion function

R :

Universal gas constant

β :

Heating rate and β = dT/dt (where t is time)

k(T):

A temperature dependence

A :

Pre-exponential factor

E a :

Activation energy given by the Arrhenius equation

References

  1. Undurraga J, Tondo L, Schalkwijk S, Vieta E, Baldessarini RJ. Re-analysis of the earliest controlled trials of imipramine. J Affect Disord. 2013;147(1–3):451–4.

    Article  CAS  Google Scholar 

  2. Bermudez-Saldana JM, Quinones-Torrelo C, Sagrado S, Medina-Herndndez MJ, Villanueva-Camanas RM. A micellar liquid chromatographic method for quality control of pharmaceutical preparations containing tricyclic antidepressants. Chromatographia. 2002;56(5/6):299–306.

    Article  CAS  Google Scholar 

  3. Cruz-Vera M, Lucena R, Cárdenas S, Valcárcel M. Fast urinary screening for imipramine and desipramine using on-line solid-phase extraction and selective derivatization. J Chromatogr B. 2007;857:275–80.

    Article  CAS  Google Scholar 

  4. Nagasawa M, Otsuka T, Yasuo S, Furuse M. Chronic imipramine treatment differentially alters the brain and plasma amino acid metabolism in Wistar and Wistar Kyoto rats. Eur J Pharmacol. 2015;762:127–35.

    Article  CAS  Google Scholar 

  5. Jaworska A, Malek K. A comparison between adsorption mechanism of tricyclic antidepressants on silver nanoparticles and binding modes on receptors. Surface-enhanced Raman spectroscopy studies. J Colloid Interface Sci. 2014;431:117–24.

    Article  CAS  Google Scholar 

  6. Kabir-ud-Din, Rub MA, Naqvi AZ. Aqueous amphiphilic drug (amitriptyline hydrochloride)-bile salt mixtures at different temperatures. Colloids Surfaces B Biointerfaces. 2011;84(2):285–91.

    Article  CAS  Google Scholar 

  7. Kabir-ud-Din, Yaseen Z, Sheikh MS. Modulation of aggregation behavior of amphiphilic drug AMT under the influence of polymer molecular weight and composition. Colloids Surfaces B Biointerfaces. 2011;87(2):340–5.

    Article  CAS  Google Scholar 

  8. http://www.drugbank.ca/drugs/DB00321. Accessed 9 May 2016.

  9. Rub MA, Asiri AM, Naqvi AZ, Khan A, Khan AAP, Kabir-ud-Din. Interaction of amphiphilic drug imipramine hydrochloride with gemini surfactants at different temperatures. J Mol Liq. 2014;194:234–40.

    Article  Google Scholar 

  10. Sun T, Shao X, Cai W. Self-assembly behavior of β-cyclodextrin and imipramine. A free energy perturbation study. Chem Phys. 2010;371(1–3):84–90.

    Article  CAS  Google Scholar 

  11. http://www.drugbank.ca/drugs/DB00458. Accessed 10 May 2016.

  12. http://www.drugbank.ca/drugs/DB01151. Accessed 10 May 2016.

  13. Karimian M, Schaffie M, Fazaelipoor MH. Determination of activation energy as a function of conversion for the oxidation of heavy and light crude oils in relation to in situ combustion. J Therm Anal Calorim. 2016;125(1):301–11.

    Article  CAS  Google Scholar 

  14. Jain A, Anthonysamy S. Oxidation of boron carbide powder. J Therm Anal Calorim. 2015;122(2):645–52.

    Article  CAS  Google Scholar 

  15. Duce C, Ciprioti SV, Ghezzi L, Ierardi V, Tinè MR. Thermal behavior study of pristine and modified halloysite nanotubes: A modern kinetic study. J Therm Anal Calorim. 2015;121(3):1011–9.

    Article  CAS  Google Scholar 

  16. Budrugeac P. Phase transitions of a parchment manufactured from deer leather. J Therm Anal Calorim. 2015;120(1):103–12.

    Article  CAS  Google Scholar 

  17. Krajnikova A, Rotaru A, Gyoryova K, Homzova K, Manolea HO, Kovarova J, Hudekova D. Thermal behaviour and antimicrobial assay of some new zinc(II) 2-aminobenzoate complex compounds with bioactive ligands. J Therm Anal Calorim. 2015;120(1):73–83.

    Article  CAS  Google Scholar 

  18. Olszak-Humienik M, Jablonski M. Thermal behavior of natural dolomite. J Therm Anal Calorim. 2015;119(3):2239–48.

    Article  CAS  Google Scholar 

  19. Fuliaş A, Vlase G, Vlase T, Şuta L-M, Şoica C, Ledeţi I. Screening and characterization of cocrystal formation between carbamazepine and succinic acid. J Therm Anal Calorim. 2015;121(3):1081–6.

    Article  Google Scholar 

  20. Ivan C, Suta L, Olariu T, Ledeti I, Vlase G, Vlase T, Olariu S, Matusz P, Fulias A. Preliminary kinetic study for heterogenous degradation of cholesterol-containing human biliary stones. Rev Chim. 2015;66(8):1253–6.

    CAS  Google Scholar 

  21. Ledeţi I, Vlase G, Ciucanu I, Olariu T, Fuliaş A, Şuta L-M, Belu I. Analysis of solid binary systems containing simvastatin. Rev Chim. 2015;66(2):240–3.

    Google Scholar 

  22. Fuliaş A, Soica C, Ledeţi I, Vlase T, Vlase G, Şuta L-M, Belu A. Characterization of pharmaceutical acetylsalicylic acid-theophylline cocrystal obtained by slurry method under microwave irradiation. Rev Chim. 2014;65(11):1281–4.

    Google Scholar 

  23. Ilici M, Bercean V, Venter M, Ledeti I, Olariu T, Suta L-M, Fulias A. Investigations on the thermal-induced degradation of transitional coordination complexes containing (3 h-2-thioxo-1,3,4-thiadiazol-5-yl)thioacetate moiety. Rev Chim. 2014;65(10):1142–5.

    CAS  Google Scholar 

  24. Fuliaş A, Vlase G, Ledeţi I, Şuta L-M. Ketoprofen-cysteine equimolar salt: Synthesis, thermal analysis, PXRD and FTIR spectroscopy investigation. J Therm Anal Calorim. 2015;121(3):1087–91.

    Article  Google Scholar 

  25. Ledeţi I, Ledeţi A, Vlase G, Vlase T, Matusz P, Bercean V, Suta L-M, Piciu D. Thermal stability of synthetic thyroid hormone l-thyroxine and l-thyroxine sodium salt hydrate both pure and in pharmaceutical formulations. J Pharm Biomed Anal. 2016;125:33–40.

    Article  Google Scholar 

  26. Fuliaş A, Vlase G, Vlase T, Soica C, Heghes A, Craina M, Ledeti I. Comparative kinetic analysis on thermal degradation of some cephalosporins using TG and DSC data. Chem Cent J. 2013;7(1):70.

    Article  Google Scholar 

  27. Ledeti I, Fulas A, Vlase G, Vlase T, Doca N. Novel triazolic copper (II) complex: Synthesis, thermal behaviour and kinetic study. Rev Roum Chim. 2013;58(4–5):441–50.

    CAS  Google Scholar 

  28. Ledeti I, Fulias A, Vlase G, Vlase T, Bercean V, Doca N. Thermal behaviour and kinetic study of some triazoles as potential anti-inflammatory agents. J Therm Anal Calorim. 2013;114(3):1295–305.

    Article  CAS  Google Scholar 

  29. Lv G, Stockwell C, Niles J, Minegar S, Li Z, Jiang WT. Uptake and retention of amitriptyline by kaolinite. J Colloid Interface Sci. 2013;411:198–203.

    Article  CAS  Google Scholar 

  30. Ledeti A, Vlase G, Ledeti I, Vlase T, Matusz P, Dehelean C, Circioban D, Stelea L, Suta L-M. Thermal stability of desipramine and imipramine. Rev Chim. 2016;67(2):336–8.

    CAS  Google Scholar 

  31. Blessel KW, Rudy BC, Senkowski BZ. Analytical profiles of drug subtances. In: Florey K, editor. Vol 3. New York and London: Academic Press; 1974.

  32. Cui H-W, Jiu J-T, Sugahara T, Nagao S, Suganuma K, Uchida H, Schroder KA. Using the Friedman method to study the thermal degradation kinetics of photonically cured electrically conductive adhesives. J Therm Anal Calorim. 2015;119(1):425–33.

    Article  CAS  Google Scholar 

  33. Ledeţi I, Vlase G, Vlase T, Fuliaş A. Kinetic analysis of solid-state degradation of pure pravastatin versus pharmaceutical formulation. J Therm Anal Calorim. 2015;121(3):1103–10.

    Article  Google Scholar 

  34. Soyleyici S, Cilgi GK. Thermal and kinetic analyses of 2,5-bis(2-hydroxyphenyl)thiazolo[5,4-d]thiazole. J Therm Anal Calorim. 2014;118(2):705–9.

    Article  CAS  Google Scholar 

  35. Friedman HL. New methods for evaluating kinetic parameters from thermal analysis data. J Polym Sci Pol Lett. 1969;7:41–6.

    Article  CAS  Google Scholar 

  36. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  37. Akahira T, Sunose T. Research report, Trans joint convention of four electrical institutes. Chiba Inst Technol Sci Technol. 1971;16:22–31.

    Google Scholar 

  38. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Pol Lett. 1966;4:323–8.

    Article  CAS  Google Scholar 

  39. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  40. Serra R, Sempere J, Nomen R. The non-parametric kinetics. A new method for the kinetic study of thermoanalytical data. J Therm Anal. 1998;52:933–43.

    Article  CAS  Google Scholar 

  41. Serra R, Sempere J, Nomen R. A new method for the kinetic study of thermoanalytical data: The non-parametric kinetics model. Thermochim Acta. 1998;316:37–45.

    Article  CAS  Google Scholar 

  42. Vlase T, Vlase G, Birta N, Doca N. Comparative results of kinetic data obtained with different methods for complex decomposition steps. J Therm Anal Calorim. 2007;88:631–5.

    Article  CAS  Google Scholar 

  43. Wall ME, Rechtsteiner A, Rocha LM. Singular value decomposition and principal component analysis. In: Berrar DP, Dunitzky W, Granzow M, editors. A practical approach to microarray data analysis. Norwell: Kluwer; 2003. p. 91–109.

    Chapter  Google Scholar 

  44. Sestak J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3:1–12.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the PN-II-RU-TE-2014-4-0515 to Adriana Ledeţi, Gabriela Vlase and Ionuţ Ledeţi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ionut Ledeti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ledeti, A., Vlase, G., Vlase, T. et al. Kinetic study for solid-state degradation of mental disorder therapeutic agents. J Therm Anal Calorim 131, 155–165 (2018). https://doi.org/10.1007/s10973-016-6064-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-6064-8

Keywords

Navigation