Log in

A new approach for investigating neurodegenerative disorders in mice based on DSC

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, we develop a new approach based on differential scanning calorimetry (DSC) for diagnostics and characterization of the changes in the brain at molecular and supramolecular level associated with drug-induced neurodegenerative disorders. In order to test the DSC potential, we used an experimental animal model of scopolamine-induced dementia of Alzheimer’s disease (AD) type. The DSC measurements taken on supernatants of brain tissue homogenates isolated from healthy animals and animals with scopolamine-induced dementia showed that heat capacity curves for animals with scopolamine-induced dementia strongly differ from the respective curves for healthy animals. The effects of preventive treatments with various substances and their combinations expected to have protective effect and hinder the development of AD (myrtenal, ellagic acid, lipoic acid, ascorbic acid) are also clearly displayed in the calorimetric scans. These measurements show that DSC is an appropriate method for detection and characterization of the compositional changes taking place in affected by dementia brain tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Garbett NC, Miller JJ, Jenson AB, Chaires JB. Calorimetry outside the box: a new window into the plasma proteome. Biophys J. 2008;94(4):1377–83.

    Article  CAS  Google Scholar 

  2. Garbett NC, Miller JJ, Jenson AB, Miller DM, Chaires JB. Interrogation of the plasma proteome with differential scanning calorimetry. Clin Chem. 2007;53(11):2012–4.

    Article  CAS  Google Scholar 

  3. Goralski P, Rogalinska M, Blonski JZ, Pytel E, Robak T, Kilianska ZM, et al. The differences in thermal profiles between normal and leukemic cells exposed to anticancer drug evaluated by differential scanning calorimetry. J Therm Anal Calorim. 2014;118(2):1339–44.

    Article  CAS  Google Scholar 

  4. Kikalishvili L, Ramishvili M, Nemsadze G, Lezhava T, Khorava P, Gorgoshidze M, et al. Thermal stability of blood plasma proteins of breast cancer patients, DSC study. J Therm Anal Calorim. 2015;120(1):501–5.

    Article  CAS  Google Scholar 

  5. Mehdi M, Fekecs T, Zapf I, Ferencz A, Lorinczy D. Differential scanning calorimetry (DSC) analysis of human plasma in different psoriasis stages. J Therm Anal Calorim. 2013;111(3):1801–4.

    Article  CAS  Google Scholar 

  6. Michnik A, Drzazga Z, Michalik K, Barczyk A, Santura I, Sozanska E, et al. Differential scanning calorimetry study of blood serum in chronic obstructive pulmonary disease. J Therm Anal Calorim. 2010;102(1):57–60.

    Article  CAS  Google Scholar 

  7. Michnik A, Drzazga Z, Sadowska-Krepa E, Klapcinska B. Calorimetric monitoring of the effect of endurance training and testosterone treatment on rat serum denaturation transition. J Therm Anal Calorim. 2014;115(3):2231–7.

    Article  CAS  Google Scholar 

  8. Moezzi M, Ferencz A, Lorinczy D. Evaluation of blood plasma changes by differential scanning calorimetry in psoriatic patients treated with drugs. J Therm Anal Calorim. 2014;116(2):557–62.

    Article  CAS  Google Scholar 

  9. Fekecs T, Zapf I, Ferencz A, Lorinczy D. Differential scanning calorimetry (DSC) analysis of human plasma in melanoma patients with or without regional lymph node metastases. J Therm Anal Calorim. 2012;108(1):149–52.

    Article  CAS  Google Scholar 

  10. Todinova S, Krumova S, Gartcheva L, Robeerst C, Taneva SG. Microcalorimetry of blood serum proteome: a modified interaction network in the multiple myeloma case. Anal Chem. 2011;83(20):7992–8.

    Article  CAS  Google Scholar 

  11. Brandt JM, Briere LK, Marr J, MacDonald SJ, Bourne RB, Medley JB. Biochemical comparisons of osteoarthritic human synovial fluid with calf sera used in knee simulator wear testing. J Biomed Mater Res Part A. 2010;94A(3):961–71.

    CAS  Google Scholar 

  12. Chagovetz AA, Jensen RL, Recht L, Glantz M, Chagovetz AM. Preliminary use of differential scanning calorimetry of cerebrospinal fluid for the diagnosis of glioblastoma multiforme. J Neurooncol. 2011;105(3):499–506.

    Article  CAS  Google Scholar 

  13. Chagovetz AA, Quinn C, Damarse N, Hansen LD, Chagovetz AM, Jensen RL. Differential scanning calorimetry of gliomas: a new tool in brain cancer diagnostics? Neurosurgery. 2013;73(2):289–95.

    Article  Google Scholar 

  14. Winslow JT, Camacho F. Cholinergic modulation of a decrement in social-investigation following repeated contracts between mice. Psychopharmacology. 1995;121(2):164–72.

    Article  CAS  Google Scholar 

  15. Riedel G, Kang SH, Choi DY, Platt B. Scopolamine-induced deficits in social memory in mice: reversal by donepezil. Behav Brain Res. 2009;204(1):217–25.

    Article  CAS  Google Scholar 

  16. Jarvik ME, Kopp R. An improved one-trial passive avoidance learning situation. Psychol Rep. 1967;21(1):221.

    Article  CAS  Google Scholar 

  17. Boissier JR, Simon P. Dissociation de deux composantes dans le comportement dinvestigation de la souris. Arch Int Pharmacodyn Ther. 1964;147(3–4):372.

    CAS  Google Scholar 

  18. Takahashi K, Sturtevant JM. Thermal-denaturation of streptomyces subtilisin inhibitor, subtilisin BPN’, and the inhibitor-subtilisin complex. Biochemistry. 1981;20(21):6185–90.

    Article  CAS  Google Scholar 

  19. Peralvarez-Marin A, Lorenz-Fonfria VA, Simon-Vazquez R, Gomariz M, Meseguer I, Querol E, et al. Influence of proline on the thermostability of the active site and membrane arrangement of transmembrane proteins. Biophys J. 2008;95(9):4384–95.

    Article  CAS  Google Scholar 

  20. Packer L, Witt EH, Tritschler HJ. Alpha-lipoic acid as a biological antioxidant. Free Radic Biol Med. 1995;19(2):227–50.

    Article  CAS  Google Scholar 

  21. Bast A, Haenen G. Lipoic acid: a multifunctional antioxidant (reprinted from thiol metabolism and redox regulation of cellular functions). BioFactors. 2003;17(1–4):207–13.

    Article  CAS  Google Scholar 

  22. Smith AR, Shenvi SV, Widlansky M, Suh JH, Hagen TM. Lipoic acid as a potential therapy for chronic diseases associated with oxidative stress. Curr Med Chem. 2004;11(9):1135–46.

    Article  CAS  Google Scholar 

  23. Li F-J, Shen L, Ji H-F. Dietary intakes of vitamin E, vitamin C, and beta-carotene and risk of Alzheimer’s disease: a meta-analysis. J Alzheimers Dis. 2012;31(2):253–8.

    CAS  Google Scholar 

Download references

Acknowledgements

Support of the Medical University—Sofia, Bulgaria, grants 1И/2012 and 29/2015, and of the Institute of Neurobiology, BAS, is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Tenchov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 7873 kb)

Supplementary material 2 (TIFF 7873 kb)

Supplementary material 3 (TIFF 7873 kb)

Supplementary material 4 (TIFF 7873 kb)

Supplementary material 5 (TIFF 7873 kb)

Supplementary material 6 (TIFF 7873 kb)

Supplementary material 7 (TIFF 7874 kb)

Supplementary material 8 (TIFF 7874 kb)

Supplementary material 9 (TIFF 7874 kb)

Supplementary material 10 (TIFF 7874 kb)

Supplementary material 11 (TIFF 7874 kb)

Supplementary material 12 (TIFF 7873 kb)

Supplementary material 13 (TIFF 7873 kb)

Supplementary material 14 (TIFF 7873 kb)

Supplementary material 15 (TIFF 7874 kb)

Supplementary material 16 (TIFF 7874 kb)

Supplementary material 17 (TIFF 7873 kb)

Supplementary material 18 (TIFF 7873 kb)

Supplementary material 19 (TIFF 7873 kb)

Supplementary material 20 (TIFF 7873 kb)

Supplementary material 21 (TIFF 7873 kb)

Supplementary material 22 (TIFF 7873 kb)

Supplementary material 23 (TIFF 7873 kb)

Supplementary material 24 (TIFF 7873 kb)

Supplementary material 25 (TIFF 7873 kb)

Supplementary material 26 (TIFF 7873 kb)

Supplementary material 27 (TIFF 7873 kb)

Supplementary material 28 (TIFF 7873 kb)

Supplementary material 29 (TIFF 7873 kb)

Supplementary material 30 (TIFF 7874 kb)

Supplementary material 31 (TIFF 7874 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tenchov, B., Abarova, S., Koynova, R. et al. A new approach for investigating neurodegenerative disorders in mice based on DSC. J Therm Anal Calorim 127, 483–486 (2017). https://doi.org/10.1007/s10973-016-5749-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5749-3

Keywords

Navigation