Log in

Thermal properties of palm fiber and palm fiber-reinforced ABS composite

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, a natural fiber extracted from the palm tree was used as reinforcement for acrylonitrile butadiene styrene (ABS) matrix composites. Palm fiber (PF)-reinforced ABS (PF-ABS) composites were prepared via injection molding machine. Three sets of samples were prepared for three different mass% (5, 10 and 20 %) of fiber contents. The effect of fiber addition in composite along with the age and different edges of the palm fiber on thermal properties was evaluated with the help of thermogravimetric/differential thermogravimetric, differential thermal analyses and thermomechanical analysis. Thermal stability of the palm fiber is more for 11- to 20-year age group than 5- to 10-year age group for both thin and thick edges of palm fiber. The thermal stability of PF-ABS composites for different mass percentage of fiber is more or less same except 10 % fiber content in PF-ABS composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Nigrawal A, Chand N. Preparation, dielectric and a.c. conductivity studies on chemically treated sisal powder filled polyvinyl alcohol bio composites. Int J Eng Sci Technol. 2012;4:191–209.

    Google Scholar 

  2. Bavan S, Kumar GCM. Thermal properties of maize fiber reinforced unsaturated polyester resin composites. In: Proceedings of the World Congress on Engineering, III. London, UK; 2013.

  3. Afroze S, Kabir H, Rahman MM, Kabir MA, Ahmed F, Hossain MA, Gafur MA. Elastic and electrical properties of graphite and talc filler reinforced polypropylene (PP) composites. Int J Basic Appl Sci. 2012;12:13–6.

    Google Scholar 

  4. Jahan A, Rahman MM, Kabir H, Kabir MA, Ahmed F, Hossain MA, Gafur MA. Comparative study of physical and elastic properties of jute and glass fiber reinforced LDPE composites. Int J Sci Tech Res. 2012;1:68–72.

    Google Scholar 

  5. Afroze S, Rahman MM, Kabir H, Kabir MA, Ahmed F, Hossain MA, Gafur MA. Physical, optical and thermal properties of graphite and talc filler reinforced polypropylene (PP) composites. Int J Adv Sci Technol Res. 2012;5:40–9.

    Google Scholar 

  6. Durowaye SI, Lawal GI, Olagbaju OI. Microstructure and mechanical properties of sisal particles reinforced polypropylene composite. Int J Compos Mater. 2014;4:190–5.

    CAS  Google Scholar 

  7. Prasad AVR, Rao KM. Mechanical properties of natural fibre reinforced polyester composites: jowar, sisal and bamboo. Mater Des. 2011;32:4658–63.

    Article  CAS  Google Scholar 

  8. Asgekar SD, Joshi VK, Futane SP, Joshi PS. Characteristics of sugarcane/coir fibres reinforced composites in phenol formaldehyde resin. Int J Compos Mater. 2013;3:156–62.

    CAS  Google Scholar 

  9. Fardausy A, Kabir MA, Kabir H, Rahman MM, Begam K, Ahmed F, Hossain MA, Gafur MA. Study of physical, mechanical and thermal properties of unidirectional jute fiber reinforced PVC film composites. Int J Adv Res Eng Technol. 2012;3:267–74.

    Google Scholar 

  10. Jahan A, Rahman MM, Kabir H, Kabir MA, Ahmed F, Hossain MA, Gafur MA. Optical, electrical and thermal properties of jute and glass fiber reinforced LDPE composites. Int J Sci Technol Res. 2012;1:482–90.

    Google Scholar 

  11. Khan MA, Bhattacharia SK. Effect of novel coupling agent on the mechanical and thermal properties of unidirectional jute–vinyl ester composites. J Reinf Plast Compos. 2007;26:617–27.

    Article  CAS  Google Scholar 

  12. Binhussaina MA, Tonsy MME. Palm leave and plastic waste wood composite for out-door structures. Constr Build Mater. 2013;47:1431–5.

    Article  Google Scholar 

  13. Kabir H, Gafur MA, Ahmed F, Begum F, Qadir MR. Investigation of physical and mechanical properties of bamboo fiber and PVC foam sheet composites. Univers J Mater Sci. 2014;2:119–24.

    Google Scholar 

  14. Ochi Shinji. Tensile and flexural properties of bamboo fiber/bamboo powder composite materials. Int J Compos Mater. 2013;3:130–5.

    Google Scholar 

  15. Mohammad NNB, Arsad A. Mechanical, thermal and morphological study of kenaf fiber reinforced rPET/ABS composites. Malays Polym J. 2013;8:8–13.

    Google Scholar 

  16. Jun YJ, Tae KJ, Hwa JO, Jae RY. Thermal stability and flammability of coconut fiber reinforced poly (lactic acid) composites. Compos Part B Eng. 2011;43:2434–8.

    Google Scholar 

  17. Danladi A, Shuaib J. Fabrication and properties of pineapple fibre/high density polyethylene composites. Am J Mater Sci. 2014;4:139–43.

    Google Scholar 

  18. Rahman KS, Islam MN, Rahman MM, Dungani H, Halil AK. Flat-pressed wood plastic composites from sawdust and recycled polyethylene terephthalate (PET): physical and mechanical properties. Spring Plus. 2013;2:629–35.

    Article  Google Scholar 

  19. Durowaye SI, Lawal GI, Akande MA, Durowaye VO. Mechanical properties of particulate coconut shell and palm fruit polyester composites. Int J Mater Eng. 2014;4:141–7.

    Google Scholar 

  20. Husseinsyah S, Mostapha M. The effect of filler content on properties of coconut shell filled polyester composites. Malays Polym J. 2011;6:87–97.

    Google Scholar 

  21. Lavia D, Karoly R, Janos M. Wood flour filled polypropylene composites, interfacial adhesion and micromechanical deformations. Polym Eng Sci. 2007;10:1247–55.

    Google Scholar 

  22. Premalal HGB, Ismail H, Baharin A. Comparison of the mechanical properties of the rice husk powder filled polypropylene composites with talc filled polypropylene composites. Polym Test. 2002;21:833–9.

    Article  CAS  Google Scholar 

  23. Herrera-Franco PJ, Valadez-Gonzalez A. A study of the mechanical properties of short natural-fiber reinforced composites. Compos Part B. 2005;36:597–608.

    Article  Google Scholar 

  24. Chandramohan D, Marimuthu DK. Tensile and hardness tests on natural fiber reinforced polymer composite material. Int J Adv Eng Sci Technol. 2011;691:97–104.

    Google Scholar 

  25. Lee SH, Wang S. Biodegradable polymers/bamboo fiber bio-composites with bio-based coupling agent. Compos Part A. 2006;37:80–91.

    Article  CAS  Google Scholar 

  26. Dhakal HN, Zhang ZY, Richardson MOW. Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Compos Sci Technol. 2007;67:1674–83.

    Article  CAS  Google Scholar 

  27. Pathania D, Singh D, Sharma D. Electrical properties of natural fiber graft co-polymer reinforced phenol formaldehyde composites. Optoelectron Adv Mater Rap Commun. 2010;4:1048–51.

    CAS  Google Scholar 

  28. Wambua P, Ivens J, Verpoest I. Natural fibres: can they replace glass in fibre reinforced plastics. Compos Sci Technol. 2003;63:1259–64.

    Article  CAS  Google Scholar 

  29. Mussig J. Industrial applications of natural fibres: structure, properties and technical applications. New York: Wiley; 2010. ISBN 978-0-470-69508-1.

    Book  Google Scholar 

  30. Maniruzzaman M, Rahman MH, Zaman MAA. Composition of agave atroverance fiber. Jahangirnagar Univ J Sci. 2005;28:23–30.

    Google Scholar 

  31. Islam MN. Development and characterization of polymer matrix composites (PMCs) using indigenous natural fiber as reinforcing materials. In: PhD Thesis, January, 2009, Department of Physics, Jahangirnagar University, Bangladesh.

  32. Salari D, Ranjbar H. Study on the recycling of ABS resins: simulation of reprocessing and thermo-oxidation. Iranian Polym J. 2008;17:599–610.

    CAS  Google Scholar 

  33. Khan MA, Islam T, Rahman MA, Islam JMM, Khan RA, Gafur MA, Mollah MZI, Alam AKM. Thermal, mechanical and morphological characterization of jute/gelatin composites. Polym Plasti Technol Eng. 2010;49:742–7.

    Article  CAS  Google Scholar 

  34. Eleftheria R, Zoe T, Eleni P, Konstantinos C, Electra P, Eleftheria A, Kostas T, Dimitrios NB. Effect of maleic anhydride on the mechanical and thermal properties of hemp/high-density polyethylene green composites. J Therm Anal Calorim. 2015;121:93–105.

    Article  Google Scholar 

  35. Florin SCM, Nita T, Adriana M, Fanica M. Physical and thermal characterization of some cellulose fabrics as reinforced materials for composite. J Therm Anal Calorim. 2015;120:1703–14.

    Article  Google Scholar 

  36. Hatakeyama H, Ohsuga T, Hatakeyama T. Thermogravimetry on wood powder-filled polyurethane composites derived from lignin. J Therm Anal Calorim. 2014;118:23–30.

    Article  CAS  Google Scholar 

  37. AlMaadeed MA, Kahraman R, Khanam PN, Madi N. Date palm wood flour/glass fibre reinforced hybrid composites of recycled polypropylene: mechanical and thermal properties. Mater Des. 2012;42:289–94.

    Article  CAS  Google Scholar 

  38. Alireza D, Sara MA, Mariam AAM, Azman H, Mat UW. Mechanical and thermal properties of date palm leaf fiber reinforced recycled poly (ethylene terephthalate) composites. Mater Des. 2013;52:841–8.

    Article  Google Scholar 

  39. Naznin M, Abedin MZ, Ahmad M, Gafur MA. Influence of Acacia catechu extracts and urea and gamma irradiation on the mechanical properties of strach/PVA-based material. Int Sch Res Netw Polym Sci. 2012. doi:10.5402/2012/348685.

    Google Scholar 

  40. Gafur MA, Akter H, Sharma S, Bhuiyan AH. Thermal properties of natural fiber reinforced PVC composites. In: Proceedings of the 4th BSME-ASME international conference on thermal engineering, 27–29 December, 2008, Dhaka, Bangladesh.

  41. Neher B, Bhuiyan MMR, Kabir H, Qadir MR, Gafur MA, Ahmed F. Study of mechanical and physical properties of palm fiber reinforced acrylonitrile butadiene styrene composite. Mater Sci Appl. 2014;5:39–45.

    Google Scholar 

  42. Neher B, Gafur MA, Mansur MAA, Bhuiyan MMR, Qadir MR, Ahmed F. Investigation of the surface morphology and structural characterization of palm fiber reinforced acrylonitrile butadiene styrene (PF-ABS) composites. Mater Sci Appl. 2014;5:378–86.

    CAS  Google Scholar 

  43. Stevens MP. Polymer chemistry, an introduction. 3rd ed. Oxford: Oxford University Press; 2011.

    Google Scholar 

  44. Azwa ZN, Yousif BF, Manalo AC, Karunasena W. A review on the degradability of polymeric composites based on natural fibres. Mater Des. 2013;47:424–42.

    Article  CAS  Google Scholar 

  45. Huda MS, Drzal LT, Misra M, Mohanty AK, Williams K, Mielewski DF. A study on bio-composites from recycled newspaper fiber and poly (lactic acid). Ind Eng Chem Res. 2012;44:5593–601.

    Article  Google Scholar 

  46. Wielage B, Lampke T, Mark G, Nestler K, Starke D. Thermogravimetric and differential scanning calorimetric analysis of natural fibres and polypropylene. Thermochim Acta. 1999;337:169–77.

    Article  CAS  Google Scholar 

  47. Sergio NM, Veronica C, Ruben JSR, Frederico MM. Thermogravemetric stability of polymer composites reinforced with less common ligno-cellulosic fibers—an overview. J Mater Res Technol. 2012;1:117–26.

    Article  Google Scholar 

  48. Moniruzzaman M. Interface modification and mechanical properties of ligno-cellulosic okra fiber reinforced bakelite composites. In: M.Sc. Thesis, Islamic University of Kustia; 2008.

  49. Thermal decomposition measurement of ABS resin I, hitachi high tech science corporation. http://www.hitachihightech.com/file/global/pdf/products/science/appli/ana/thermal/application_TA_066e.pdf.

  50. Basics of thermomechanical analysis with TMA 4000. Technical Note, Perkin Elmer. http://www.perkinelmer.com/CMSResources/Images/44-154962TCH_TMA_4000.pdf.

Download references

Acknowledgements

This research work was carried out in Heat Treatment Laboratory, PP & PDC, BCSIR, Dhaka-1205, Bangladesh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humayun Kabir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neher, B., Bhuiyan, M.M.R., Kabir, H. et al. Thermal properties of palm fiber and palm fiber-reinforced ABS composite. J Therm Anal Calorim 124, 1281–1289 (2016). https://doi.org/10.1007/s10973-016-5341-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5341-x

Keywords

Navigation