Log in

DTA-TG and XRD study on the reaction between ZrOCl2·8H2O and (NH4)2HPO4 for synthesis of ZrP2O7

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, we report results of thermoanalytical investigation on the reaction between ZrOCl2·8H2O and (NH4)2HPO4 in molar ratio 1:2. Differential thermal-thermogravimetric and X-ray diffraction analyses were performed in order to reveal the chemical transformations, which took place during heating of the individual compounds ZrOCl2·8H2O, (NH4)2HPO4 and the mixture ZrOCl2·8H2O:2(NH4)2HPO4. It was shown that the transformations in the mixture below 160 °C were connected with dehydration of ZrOCl2·8H2O and interaction between the components of the mixture, which resulted in the formation of NH4Cl, NH4H2PO4 and a mainly amorphous zirconium phase, most likely t-ZrO2. The zirconium component subsequently reacted with ammonium dihydrophosphate (below 200 °C) or with dehydrated phosphate derivatives (above 200 °C), which in both cases yielded an amorphous product. The interaction between the components of the mixture resulting in the formation of ZrP2O7 was completed by its crystallisation at 610 °C. Our study indicates an alternative low-temperature approach for the synthesis of the technologically important ZrP2O7 material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ota T, Yamai I. Thermal expansion of ZrP2O7 and related solid solutions. J Therm Sci. 1987;22:3762–4.

    CAS  Google Scholar 

  2. Chen F, Shen Q, Schoenung JM, Zhang L. Synthesis and pressureless sintering of zirconium phosphate ceramics. J Am Ceram Soc. 2008;91:3173–80.

    Article  CAS  Google Scholar 

  3. Al-Zahrani SM, Elbashir NO, Abasaeed AE, Abdulwahed M. Oxidative dehydrogenation of isobutane over pyrophosphate catalytic systems. Catal Lett. 2000;69:65–70.

    Article  CAS  Google Scholar 

  4. Srilakshmi Ch, Ramesh K, Nagaraju P, Lingaiah N, Prasad PSS. Studies on preparation, characterization and ammoxidation functionality of zirconium phosphate-supported V2O5 catalysts. Catal Lett. 2006;106:115–22.

    Article  CAS  Google Scholar 

  5. Pelova V, Grigorov L, Bogatchev G. Luminescence of Tb3+-activated zirconium pyrophosphate: influence of compensating and sensitizing impurities. J Mater Sci Lett. 1997;16:161–4.

    Article  CAS  Google Scholar 

  6. Kim CH, Yim HS. The effect of tetravalent metal on dielectric property in ZrP2O7 and TiP2O7. Solid State Commun. 1999;110:137–42.

    Article  CAS  Google Scholar 

  7. Birkedal H, Andersen AMK, Arakcheeva A, Chapuis G, Norby P, Pattison P. The room-temperature superstructure of ZrP2O7 is orthorhombic: there are no unusual 180 degrees P-O-P bond angles. Inorg Chem. 2006;45:4346–51.

    Article  CAS  Google Scholar 

  8. Andersen AM, Norby P. Ab initio structure determination and rietveld refinement of a high-temperature phase of zirconium hydrogen phosphate and a new polymorph of zirconium pyrophosphate from in situ temperature-resolved powder diffraction data. Acta Crystallogr. 2000;56B:618–25.

    Article  Google Scholar 

  9. Sclar CB, Carrison LC, Schwartz CM. High-pressure polymorph of zirconium pyrophosphate. Nature. 1964;4958:573–4.

    Article  Google Scholar 

  10. Chernorukov NG, Korshunov IA, Zhuk MI. Thermal stability of crystal zirconium and hafnium phosphates. Works Chem Chem Technol. 1974;3:7–8.

    Google Scholar 

  11. Seyyidogle S, Ozenbas M, Necmeddin Y, Yilmaz A. Investigation of solid solution of ZrP2O7-Sr2P2O7. J Mater Sci. 2007;42:6453–63.

    Article  Google Scholar 

  12. Watanabe M, Sakurai M, Yamada T, Mori H. Synthesis and thermal properties of zirconium ortho- and diphosphates. J Mater Sci. 1996;31:2569–72.

    Article  CAS  Google Scholar 

  13. Stinton GW, Hampson MR, Evans JSO. The 136-atom structure of ZrP2O7 and HfP2O7 from powder diffraction data. Inorg Chem. 2006;45:4352–8.

    Article  CAS  Google Scholar 

  14. Parhi P, Kramer JW, Manivannan V. Synthesis and characterization of zirconium diphosphate by microwave assisted metathesis approach. Mater Sci Eng B. 2008;153:53–6.

    Article  CAS  Google Scholar 

  15. Samed AJ, Zhang D, Hinokuma S, Machida M. Synthesis of ZrP2O7 by hydrothermal reaction and post-calcination. J Ceram Soc Jap. 2011;119:81–4.

    Article  CAS  Google Scholar 

  16. Zhao D, Deng X, Ding Z, Wang H, Ma G. Intermediate temperature ionic conduction in Mg2+-doped ZrP2O7 ceramics. Solid State Ionics. 2012;229:33–7.

    Article  CAS  Google Scholar 

  17. Völlenkle H, Wittmann A, Nowotny H. Über Diphosphate vom Typ Me(IV)P2O7. Monatsh Chem Verw Tl. 1963;94:956–63.

    Article  Google Scholar 

  18. Takagi S. Zirconium compounds. I. Thermal decomposition of zirconium chloride octahydrate. J Chem Soc Japan 1954;75:637-9.

  19. Beden B, Guillaume I. Thermal decomposition in air of zirconium chloride octahydrate. Compt Rend Ser. 1969;269C:1629–32.

    Google Scholar 

  20. Beden B, Guillaume I. Thermal decomposition under controlled pressure of zirconium chloride octahydrate. J Thermal Anal. 1974;6:131–44.

    Article  CAS  Google Scholar 

  21. Makushina NI, Petrov ES. Thermal decomposition of zirconium oxychloride. Izv Sib Otd Acad Nauk SSSR Ser Khim Nauk. 1967;3:63–6.

    Google Scholar 

  22. Guerrant GO, Brown DE. Thermal stability, thermal decomposition of high-analysis fertilizers based on ammonium phosphate. J Agr Food Chem. 1965;13(6):493–7.

    Article  CAS  Google Scholar 

  23. Van Wazer JR. Phosphorus and its compounds. New York: Interscience publishers; 1958.

    Google Scholar 

  24. Hudry D, Rakhmatullin A, Bessada C, Bardez I, Bart F, Jobic S, Deniard Ph. Reactivity of NH4H2PO4 toward LaCl3 in LiCl-KCl melt flux. Step by step formation of monazite-like LaPO4. Inorg Chem. 2009;48:7141–50.

    Article  CAS  Google Scholar 

  25. Abdel-Kader A, Ammar AA, Saleh SI. Thermal behaviour of ammonium dihydrogen phosphate crystals in the temperature range 25–600 °C. Thermochim Acta. 1991;176:293–304.

    Article  CAS  Google Scholar 

  26. Bielanski A. Fundamentals of inorganic chemistry. Warszawa: PWN; 1998.

    Google Scholar 

  27. Stefanic G, Music S, Popovic S, Furic K. Formation of ZrO2 by the thermal decomposition of zirconium salts. Croat Chem Acta. 1996;69:223.

    CAS  Google Scholar 

Download references

Acknowledgements

The Ministry of Education, Youth and Sports of the Czech Republic, Project CZ.1.07/2.3.00/30.0021 “Enhancement of R&D Pools of Excellence at the University of Pardubice”, financially supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nataliia Gorodylova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorodylova, N., Šulcová, P., Bosacka, M. et al. DTA-TG and XRD study on the reaction between ZrOCl2·8H2O and (NH4)2HPO4 for synthesis of ZrP2O7 . J Therm Anal Calorim 118, 1095–1100 (2014). https://doi.org/10.1007/s10973-014-3890-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3890-4

Keywords

Navigation