Log in

Thermal, dam**, and mechanical properties of thermosetting epoxy-modified asphalts

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Epoxy-modified asphalts (epoxy asphalts) have been widely used in the pavements of orthotropic steel bridge deck. In this paper, several effects on the properties of epoxy asphalts have been investigated in detail. First, the addition of asphalts showed no significant effects on the curing reaction and the glass transition temperature of epoxy resin. Second, the dam** properties of epoxy asphalts were increased with the addition of asphalt contents. Furthermore, mechanical results showed that the stress at yield, stress at break, and tensile modulus of epoxy asphalts decreased with the increase of asphalt contents, whereas the strain at break increased with the increasing asphalt contents. The morphology of phase separation for epoxy asphalts was also observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lesueur D. The colloidal structure of bitumen: consequences on the rheology and on the mechanisms of bitumen modification. Adv Colloid Interface Sci. 2009;145:42–82.

    Article  CAS  Google Scholar 

  2. Mcnally T. Introduction to polymer modified bitumen. In: Mcnally T, editor. Polymer modified bitumen: Properties and characterization. Cambridge: Woodhead Publishing Limited; 2011. p. 1–15.

    Chapter  Google Scholar 

  3. Yidirim Y. Polymer modified asphalt binders. Constr Build Mater. 2007;21:66–72.

    Article  Google Scholar 

  4. Stastna J, Zanzotto L, Vacin OJ. Viscosity function in polymer-modified asphalts. J Colloid Interface Sci. 2003;259:200–7.

    Article  CAS  Google Scholar 

  5. Fawcett AH, Mcnally TM. A dynamic mechanical and thermal study of various rubber-bitumen blends. J Appl Polym Sci. 2000;77:586–601.

    Article  CAS  Google Scholar 

  6. Fawcett AH, Mcnally TM. Blends of bitumen with polymers having a styrene component. Polym Eng Sci. 2001;41:1251–64.

    Article  CAS  Google Scholar 

  7. Nien YH, Yeh PH, Chen WC, Liu WT, Chen JH. Investigation of flow properties of asphalt binders containing polymer modifiers. Polym Compos. 2008;29:518–24.

    Article  CAS  Google Scholar 

  8. Singh B, Gupta M, Kumar L. Bituminous polyurethane network: preparation, properties, and end use. J Appl Polym Sci. 2006;101:217–26.

    Article  CAS  Google Scholar 

  9. Perez-Lepe A, Martinez-Boza FJ, Gallegos C. High temperature stability of different polymer-modified bitumens: a rheological evaluation. J Appl Polym Sci. 2007;103:1166–74.

    Article  CAS  Google Scholar 

  10. Yu JY, Cong PL, Wu SP. Laboratory investigation of the properties of asphalt modified with epoxy resin. J Appl Polym Sci. 2009;113:3557–63.

    Article  CAS  Google Scholar 

  11. Cong PL, Yu JY, Chen SF. Effects of epoxy resin contents on the rheological properties of epoxy–asphalt blends. J Appl Polym Sci. 2010;118:3678–84.

    Article  CAS  Google Scholar 

  12. Cong PL, Chen SF, Yu JY. Investigation of the properties of epoxy resin-modified asphalt mixtures for application to orthotropic bridge decks. J Appl Polym Sci. 2011;121:2310–6.

    Article  CAS  Google Scholar 

  13. Kang Y, Chen ZM, Jiao Z, Huang W. Rubber-like thermosetting epoxy asphalt composites exhibiting atypical yielding behaviors. J Appl Polym Sci. 2010;116:1678–85.

    CAS  Google Scholar 

  14. Kang Y, Wang F, Chen ZM. Reaction of asphalt and maleic anhydride: kinetics and mechanism. Chem Eng J. 2010;164:230–7.

    Article  CAS  Google Scholar 

  15. Qian ZD, Chen LL, Jiang CL, Luo S. Performance evaluation of a lightweight epoxy asphalt mixture for basculebridge pavements. Constr Build Mater. 2011;25:3117–22.

    Article  Google Scholar 

  16. Chen LL, Qian ZD, Hu HZ. Epoxy asphalt concrete protective course used on steel railway bridge. Constr Build Mater. 2013;41:125–31.

    Article  Google Scholar 

  17. **e HF, Liu BH, Yuan ZR, Shen JY, Cheng RS. Cure kinetics of carbon nanotube/tetrafunctional epoxy nanocomposites by isothermal differential scanning calorimetry. J Polym Sci Part B. 2004;42:3701–12.

    Article  CAS  Google Scholar 

  18. **e HF, Liu BH, Sun Q, Yuan ZR, Shen JY, Cheng RS. Cure kinetic study of carbon nanofibers/epoxy composites by isothermal DSC. J Appl Polym Sci. 2005;96:329–35.

    Article  CAS  Google Scholar 

  19. Qiu SL, Wang CS, Wang YT, Liu CG, Chen XY, **e HF, Huang YA, Cheng RS. Effects of graphene oxides on the cure behaviors of a tetrafunctional epoxy resin. Express Polym Lett. 2011;5:809–18.

    Article  CAS  Google Scholar 

  20. Ciecierska E, Boczkowska A, Kurzydlowski KJ, Rosca ID, Hoa SV. The effect of carbon nanotubes on epoxy matrix nanocomposites. J Therm Anal Calorim. 2013;111:1019–24.

    Article  CAS  Google Scholar 

  21. Supriya N, Catherine KB, Rajeev R. DSC-TG studies on kinetics of curing and thermal decomposition of epoxy–ether amine systems. J Therm Anal Calorim. 2013;112:201–8.

    Article  CAS  Google Scholar 

  22. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  23. Flynn JH, Wall LA. A quick direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part B. 1966;4:323–8.

    CAS  Google Scholar 

  24. Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal Calorim. 1970;2:301–24.

    Article  CAS  Google Scholar 

  25. Koga N. Ozawa’s kinetic method for analyzing thermoanalytical curves: history and theoretical fundamentals. J Therm Anal Calorim. 2013;113:1527–41.

    Article  CAS  Google Scholar 

  26. Masson JF, Polomark GM. Bitumen microstructure by modulated differential scanning calorimetry. Thermochim Acta. 2001;374:105–14.

    Article  CAS  Google Scholar 

  27. Wise CW, Cook WD, Goodwin AA. CTBN rubber phase precipitation in model epoxy resins. Polymer. 2000;41:4625–33.

    Article  CAS  Google Scholar 

  28. Laval C, Quivoron C. Demonstration of the correlation between the absorptive capacity for water and oil of epoxy resins and their compatibility with bitumen used in road construction. C R Acad Sci IIc vol. 1973;256:743–6.

    Google Scholar 

  29. Wang CS, Chen XY, Chen JQ, Liu CG, **e HF, Cheng RS. Synthesis and characterization of novel polyurethane acrylates based on soy polyols. J Appl Polym Sci. 2011;122:2449–55.

    Article  CAS  Google Scholar 

  30. Li F, Larock RC. New soybean oil-styrene-divinylbenzene thermosetting copolymers-IV Good dam** properties. Polym Adv Technol. 2002;13:436–49.

    Article  CAS  Google Scholar 

  31. Henna PH, Larock RC. Rubbery thermosets by ring-opening metathesis polymerization of a functionalized castor oil and cycloodene. Macromol Mater Eng. 2007;292:1201–9.

    Article  CAS  Google Scholar 

  32. Gong JS, Fu WB, Zhong BJ. A study on the pyrolysis of asphalt. Fuel. 2003;82:49–52.

    Article  Google Scholar 

  33. Zhao HY, Cao Y, Sit SP, Lineberry Q, Pan WP. Thermal characteristics of bitumen pyrolysis. J Therm Anal Calorim. 2012;107:541–7.

    Article  CAS  Google Scholar 

  34. Zavareh S, Vahdat G. Toughening of brittle epoxy using bitumen as a new modifier. J Reinf Plast Comp. 2012;31:247–58.

    Article  CAS  Google Scholar 

  35. Chikhi N, Fellahi S, Bakar M. Modification of epoxy resin using reactive liquid (ATBN) rubber. Eur Polym J. 2002;38:251–64.

    Article  CAS  Google Scholar 

  36. Wang YT, Wang CS, Yin HY, Wang LL, **e HF, Cheng RS. Carboxyl-terminated butadiene–acrylonitrile-toughened epoxy/carboxyl-modified carbon nanotube nanocomposites: thermal and mechanical properties. Express Polym Lett. 2012;6:719–28.

    Article  CAS  Google Scholar 

  37. Yin HY, Wang CS, Want YT, Yuan ZR, Wang ZL, **e HF, Cheng RS. Cure reaction and morphology of epoxy asphalts. Polym Mater Sci Eng. 2012;28(11):30–3.

    CAS  Google Scholar 

  38. Champion L, Gerard JF, Planche JP, Martin D, Anderson D. Low temperature fracture properties of polymer-modified asphalts relationships with the morphology. J Mater Sci. 2001;36:451–60.

    Article  CAS  Google Scholar 

  39. Cabanelas JC, Serrano B, Gonzalez MG, Baselga J. Confocal microscopy study of phase morphology evolution in epoxy/polysiloxane thermosets. Polymer. 2005;46:6633–9.

    Article  CAS  Google Scholar 

  40. He D, Ding XD, Chang PS, Chen QM. Effect of annealing on phase separation and mechanical properties of epoxy/ATBN adhesive. Int J Adhes Adhes. 2012;38:11–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (1106020514). The authors are grateful to Dr. Laiqiang Ying and Dr. Sunjie Ye for language help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongfeng **%2C%20and%20mechanical%20properties%20of%20thermosetting%20epoxy-modified%20asphalts&author=Haiyan%20Yin%20et%20al&contentID=10.1007%2Fs10973-013-3449-9&copyright=Akad%C3%A9miai%20Kiad%C3%B3%2C%20Budapest%2C%20Hungary&publication=1388-6150&publicationDate=2013-10-23&publisherName=SpringerNature&orderBeanReset=true">Reprints and permissions

About this article

Cite this article

Yin, H., **, H., Wang, C. et al. Thermal, dam**, and mechanical properties of thermosetting epoxy-modified asphalts. J Therm Anal Calorim 115, 1073–1080 (2014). https://doi.org/10.1007/s10973-013-3449-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3449-9

Keywords

Navigation