Log in

Thermodynamic investigation on M–Te–O (M = Sc, Y) system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The standard Gibbs energy of formation of M2TeO6 and M6TeO12 (where M = Sc, Y), was determined from its vapor pressure measurements by employing thermogravimetry-based transpiration technique. This technique was validated by measuring the vapor pressure of well-studied substances such as TeO2(s) and CdCl2(s). The temperature dependence of the vapor pressure of TeO2(g) over the mixtures M6TeO12 + M2O3 (where M = Sc, Y), generated by the incongruent vaporization reaction, M6TeO12(s) → 3M2O3(s) + TeO2(g) + ½O2(g) were measured in the temperature range 1,413–1,473 K and 1,623–1,743 K for Sc6TeO12(s) and Y6TeO12(s), respectively. Similarly, the vapor pressure of TeO2(g) over the mixtures M2TeO6(s) + M6TeO12(s) generated by the vaporization reaction, 3M2TeO6(s) → M6TeO12(s) + 2TeO2(g) + O2(g) was measured in the temperature range (1,223–1,293 K) and (1,333–1,423 K) for Sc2TeO6(s) and Y2TeO6(s), respectively. From the vapor pressure measurements, the standard Gibbs energy of formation of M6TeO12 and M2TeO6 were derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jacobson NS, Opila EJ, Myers DL, Copland EH. Thermodynamics of gas phase species in the Si–O–H system. J Chem Thermodyn. 2005;37:1130–7.

    Article  CAS  Google Scholar 

  2. Opila EJ, Myers DL, Jacobson NS, Nielsen Ida MB, Johnson DL, Olminsky JK, Allendorf MD. Theoretical and experimental investigation of the thermochemistry of CrO2(OH)2(g). J Phys Chem A. 2007;111:1971–80.

    Article  CAS  Google Scholar 

  3. Alexander CA. Volatilization of urania under strongly oxidizing conditions. J Nucl Mater. 2005;346:312–8.

    Article  CAS  Google Scholar 

  4. Dharwadkar SR, Kerkar AS, Samant MS. A microthermogravimetric system for the measurement of vapour pressure by a transpiration method. Thermochim Acta. 1993;217:175–86.

    Article  CAS  Google Scholar 

  5. Samant MS, Bharadwaj SR, Kerkar AS, Tripathi SN, Dharwadkar SR. Vaporization behaviour and thermodynamic stability of zirconium tellurate ZrTe3O8. J Nucl Mater. 1994;211:181–5.

    Article  CAS  Google Scholar 

  6. Samant MS, Bharadwaj SR, Kerkar AS, Mishra R, Dharwadkar SR. Vaporization behaviour and thermodynamic stability of hafnium tellurate HfTe3O8. J Nucl Mater. 1996;227:153–6.

    Article  CAS  Google Scholar 

  7. Basu MA, Mishra R, Kerkar AS, Bharadwaj SR, Das D. Gibbs energy of formation of solid Ni3TeO6 from transpiration studies. J Nucl Mater. 2002;301:183–6.

    Article  Google Scholar 

  8. Pankajavalli R, Mallika C, Sreedharan OM, Premila M, Gopalan P. Vapour pressure of C60 by a transpiration method using a horizontal thermobalance. Thermochim Acta. 1998;316:101–8.

    Article  CAS  Google Scholar 

  9. Pankajavalli R, Mallika C, Antony Premkumar P, Nagaraja KS. Determination of vapour pressure and standard enthalpies of sublimation and vapourisation of N,N′-ethylenebis (2,4-pentanedion-iminoato) nickel(II) by a TG-based transpiration method. Chem Eng Sci. 2002;57:3603–10.

    Article  CAS  Google Scholar 

  10. Pankajavalli R, Ananthasivan K, Anthonysamy S, Rao PRV. Vapour pressure and standard enthalpy of sublimation of KBF4(s) by a TG based transpiration technique. J Nucl Mater. 2005;345:96–100.

    Article  CAS  Google Scholar 

  11. Pankajavalli R, Jain A, Anthonysamy S, Ananthasivan K, Rao PRV. Vapour pressure and standard enthalpy of sublimation of alkali–metal fluoroborates. Thermochim Acta. 2007;452:1–6.

    Article  CAS  Google Scholar 

  12. Balakrishnan S, Pankajavalli R, Anthonysamy S, Ananthasivan K. Thermodynamic stability of Sm2TeO6. Thermochim Acta. 2008;467:80–5.

    Article  CAS  Google Scholar 

  13. Viswanathan R, Lakshmi Narasimhan TS, Nalini S. Vapor pressure measurements by mass loss transpiration method with a thermogravimetric apparatus. J Phys Chem B. 2009;113:8362–8.

    Article  CAS  Google Scholar 

  14. Balasubramanian R, Lakshmi Narasimhan TS, Viswanathan R, Nalini S. Investigation of the vaporization of boric acid by transpiration thermogravimetry and Knudsen effusion mass spectrometry. J Phys Chem B. 2008;112(44):13873–84.

    Article  CAS  Google Scholar 

  15. Kleykamp H. Chemical states of the fission products in oxide fuels. J Nucl Mater. 1985;131:221–46.

    Article  CAS  Google Scholar 

  16. Cordfunke EHP, Konings RJM. Chemical interaction in water cooled nuclear fuel: a thermochemical approach. J Nucl Mater. 1988;152:301–9.

    Article  Google Scholar 

  17. Atanasova L, Dimitrova GB. Heat capacity and thermodynamic properties of tellurites Yb2(TeO3)3, Dy2(TeO3)3 and Er2(TeO3)3. J Therm Anal Calorim. 2012;107:809–12.

    Article  CAS  Google Scholar 

  18. Gospodinov G, Atanasova L. Specific thermal and thermodynamic properties of the tellurites Fe2(TeO3)3, Fe2TeO5 and Fe2Te4O11. J Therm Anal Calorim. 2008;91:655–7.

    Article  CAS  Google Scholar 

  19. Khadilkar HV, Bhojane SM, Kulkarni J, Kulkarni SG. Thermal properties of Na2TeO4(s) and TiTe3O8(s). J Therm Anal Calorim. 2012. doi:10.1007/s10973-012-2332-4.

  20. Pankajavalli R, Jain A, Babu R, Ananthasivan K, Anthonysamy S, Ganesan V. Thermodynamic characterization of lanthanum tellurate. J Nucl Mater. 2010;397:116–21.

    Article  CAS  Google Scholar 

  21. Pankajavalli R, Jain A, Babu R, Anthonysamy S, Ananthasivan K, Ganesan V, Nagarajan K. Thermodynamic studies on Pr2TeO6. J Therm Anal Calorim. doi:10.1007/s10973-012-2461-9.

  22. Sreedharan OM, Dharwadkar SR, Chandrasekharaiah MS. BARC Report No. O-239, 1973.

  23. Skudlarski K, Dudek J, Kapala J. Thermodynamics of sublimation of cadmium halides investigated by the mass spectrometric method. J Chem Thermodyn. 1987;19:857–62.

    Article  CAS  Google Scholar 

  24. Niwa K. Determination of the vapour pressure of solid salts. J Fac Sci Hokkaido Univ Ser III. 1940;3:17–61.

    Google Scholar 

  25. Borton JL, Bloom H. A boiling point method for the determination of vapour pressures of molten salts. J Phys Chem. 1956;60:1413–6.

    Article  Google Scholar 

  26. Bloom H, Wclch BJ. The vapour pressure of cadmium and zinc chlorides. J Phys Chem. 1958;62:1594–5.

    Article  CAS  Google Scholar 

  27. Moss HI. Ph.D. Thesis, Indiana University. 1961.

  28. Keneshea FJ, Cubicciottin DD. Vapour pressure of cadmium chloride and thermodynamic data for CdCl2 gas. J Chem Phys Lett. 1964;40:1778–9.

    CAS  Google Scholar 

  29. Topor L. Thermodynamic study of alkali metal vapours in equilibrium with the liquid phase. J Chem Thermodyn. 1972;4:739–44.

    Article  Google Scholar 

  30. Kwbaschewski O, Alcock CB. Metallurgical thermochemistry. 5th ed. Oxford: Pergamon; 1979.

    Google Scholar 

  31. Cristol B, Houriez J, Balesdent D. Determination par Ebullition isobare de la pression de vapour de CdCl2 pur et du mélange dinairc foudu CdCl2-KCl. J Less Common Met. 1985;113:46–57.

    Article  Google Scholar 

  32. Muenow DW, Hastie JW, Hauge R, Bautista R, Margrave JL. Vaporization, thermodynamics and structures of species in the tellurium + oxygen system. Trans Faraday Soc. 1969;65:3210–20.

    Article  CAS  Google Scholar 

  33. Knacke O, Kubaschewski O, Hesselmann K. Thermochemical properties of inorganic substances. 2nd ed. Berlin: Springer; 1991.

    Google Scholar 

  34. Aruna K, Smruti D, Ziley S, Sen BK, Venugopal V. The standard molar Gibbs energy of formation of CeTe2O6(s) and R2TeO6(s) (R = La, Nd, Dy, Y). J Alloys Compd. 2010;496:20–4.

    Article  Google Scholar 

  35. Hultgren R, Desai PD, Hawkins DT, Gleiser M, Kelley KK. Selected values of the thermodynamic properties of elements. Metals Park: American Society for Metals; 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Anthonysamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pankajavalli, R., Jain, A., Sharma, A. et al. Thermodynamic investigation on M–Te–O (M = Sc, Y) system. J Therm Anal Calorim 112, 83–93 (2013). https://doi.org/10.1007/s10973-012-2647-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2647-1

Keywords

Navigation