Log in

Study of the corrosion products formed on carbon steel surface in hydrochloric acid solution

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Effect of an antibacterial drug, sulfacetamide, IUPAC name N-[(4-aminophenyl) sulfonyl] acetamide (APSA), on the corrosion products formed on carbon steel surface in 1.0 mol L−1 HCl solution has been investigated using mass loss, X-ray photoelectron spectroscopy (XPS), and simultaneous thermal and differential scanning calorimetry/differential thermal analysis (TG/DSC/DTA). Mass loss measurements reveal that the corrosion rate of carbon steel is retarded by APSA and that the inhibition efficiency of this inhibitor increases with increasing the concentration. XPS analysis shows that, at this stage, the main product of corrosion is a non-stoichiometric Fe3+ oxyhydroxide, consisting of a mixture of FeO(OH) in anhydrous or hydrated forms, containing Cl inclusions and adsorbed APSA molecules. The mechanism of inhibition was discussed in light of the chemical structure of the investigated inhibitor. The corrosion products were analyzed using TG/DSC/DTA technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Larabi L, Harek Y, Traisnel M, Mansri A. Synergetic influence of poly(4-vinylpyridine) and potassium iodide on inhibition of corrosion of mild steel in 1 M HCl. J Appl Electrochem. 2004;34:833–9.

    Article  CAS  Google Scholar 

  2. Samide A, Bibicu I, Rogalski M, Preda M. Study of the corrosion inhibition of carbon-steel in dilute ammoniacal media using N-cyclohexyl-benzothiazole-sulfenamide. Corros Sci. 2005;47:1119–27.

    Article  CAS  Google Scholar 

  3. Subramania A, Kalyana Sundaram NT, Sathiya Priya R, Saminathan K, Muralidharan VS, Vasuedevan T. Aldimines—effective corrosion inhibitors for mild steel in hydrochloric acid solution. J Appl Electrochem. 2004;34:1–4.

    Article  Google Scholar 

  4. Samide A, Bibicu I. Kinetics corrosion process of mild steel in hydrochloric acid in absence and presence of 2-(cyclohexylaminomercapto) benzothiazole. Surf Interface Anal. 2008;40:944–52.

    Article  CAS  Google Scholar 

  5. Abd El-Rehim SS, Refay SAM, Taha F, Saleh MB, Ahmed RA. Corrosion inhibition of mild steel in acidic medium using 2-amino thiophenol and 2-cyanomethyl benzothiazole. J Appl Electrochem. 2001;31:429–35.

    Article  Google Scholar 

  6. Samide A, Bibicu I, Agiu M, Preda M. Mössbabauer spectroscopy study on the corrosion inhibition of mild steel in hydrochloric acid solution. Mater Lett. 2008;62:320–2.

    Article  CAS  Google Scholar 

  7. Hassan N, Holze R. A comparative electrochemical study of electrosorbed 2- and 4-mercaptopyridines and their application as corrosion inhibitors at C60 steel. J Chem Sci. 2009;121:693–701.

    Article  CAS  Google Scholar 

  8. Samide A, Bibicu I, Rogalski MS, Preda M. A study of the corrosion inhibition of carbon steel in diluted ammonia media using 2-mercapto benzothiazole by Mössbauer spectrometry. Acta Chim Slov. 2004;51:127–36.

    CAS  Google Scholar 

  9. Samide A, Bibicu I, Turcanu E. Surface analysis of inhibitor films formed by N-(2-hydroxybenzylidene) thiosemicarbazide on carbon steel in acidic media. Chem Eng Commun. 2009;196:1008–17.

    Article  CAS  Google Scholar 

  10. Samide A, Tutunaru B, Negrila C, Trandafir I, Maxut A. Effect of sulfacetamide on the composition of corrosion products formed onto carbon steel surface in hydrochloric acid. Dig J Nanomater Bios. 2011;6:663–73.

    Google Scholar 

  11. Ahamad I, Prasad R, Quraishi MA. Inhibition of mild steel corrosion in acid solution by pheniramine drug: experimental and theoretical study. Corros Sci. 2010;52:198–204.

    Article  Google Scholar 

  12. Fonda AS, Mostafa HA, El-Abbasy HM. Antibacterial drugs as inhibitors for the corrosion of stainless steel type 304 in HCl solution. J Appl Electrochem. 2010;40:163–73.

    Article  Google Scholar 

  13. Obot IB, Obi-Egbedi NO. 2,3-Diphenylbenzoquinoxaline: a new corrosion inhibitor for mild steel in sulphuric acid. Corros Sci. 2010;52:282–5.

    Article  CAS  Google Scholar 

  14. Shukla SK, Singh AK, Ahamad I, Quraishi MA. Streptomycin: a commercially available drug as corrosion inhibitor for carbon steel in hydrochloric acid solution. Mater Lett. 2009;63:819–22.

    Article  CAS  Google Scholar 

  15. El-Naggar MM. Corrosion inhibition of mild steel in acidic medium by some sulfa drugs compounds. Corros Sci. 2007;49:2226–36.

    Article  CAS  Google Scholar 

  16. Abdallah M. Antibacterial drugs as corrosion inhibitors for corrosion of aluminium in hydrochloric solution. Corros Sci. 2004;46:1981–96.

    Article  CAS  Google Scholar 

  17. Ebenso EE, Arslan T, Kandemirli F, Love I, Ödretır C, Saracoğlu M, Umoren SA. Theoretical studies of some sulphonamides as corrosion inhibitors for mild steel in acidic medium. Int J Quantum Chem. 2010;110:2614–36.

    Article  CAS  Google Scholar 

  18. Grosvenor AP, Kobe BA, Biesinger MC, McIntyre NS. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf Interface Anal. 2004;36:1564–74.

    Article  CAS  Google Scholar 

  19. Dupin JC, Gonbeau D, Vinatier P, Levasseur A. Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys Chem Chem Phys. 2000;2:1319–24.

    Article  CAS  Google Scholar 

  20. Yi ZA, Xu YY, Zhu LP, Dong HB, Zhu BK. Hydrophilic modification of peak porous membranes via aqueous surface-initiated atom transfer radical polymerization. Chin J Polym Sci. 2009;27:695–702.

    Article  CAS  Google Scholar 

  21. Vinnichenko M, Chevolleau T, Pham MT, Poperenko L, Maitz MF. Spectroellipsometric, AFM and XPS probing of stainless steel surfaces subjected to biological influences. Appl Surf Sci. 2002;201:41–50.

    Article  CAS  Google Scholar 

  22. Billon G, Ouddane B, Gengembre L, Boughriet A. On the chemical properties of sedimentary sulfur in estuarine environments. Phys Chem Chem Phys. 2002;4:751–6.

    Article  CAS  Google Scholar 

  23. Ait Chikh Z, Chebabe D, Dermaj A, Hajjaji N, Srhiri A, Montemor MF, Ferreira MGS, Bastos AC. Electrochemical and analytical study of corrosion inhibition on carbon steel in HCl medium by 1,12-bis(1,2,4-triazolyl)dodecane. Corros Sci. 2005;47:447–59.

    Article  CAS  Google Scholar 

  24. Gece G. The use of quantum chemical methods in corrosion inhibitor studies. Corros Sci. 2008;50:2981–92.

    Article  CAS  Google Scholar 

  25. El Ashry ESH, El Nemr A, Essawy SA, Ragab S. Corrosion inhibitors part 3: quantum chemical studies on the efficiencies of some aromatic hydrazides and Schiff bases as corrosion inhibitors of steel in acidic medium. Arkivoc. 2006;11:205–20.

    Google Scholar 

  26. Behpour M, Ghoreishi SM, Soltani N, Salavati-Niasari M, Hamadanian M, Gandomi A. Electrochemical and theoretical investigation on the corrosion inhibition of mild steel by thiosalicylaldehyde derivatives in hydrochloric acid solution. Corros Sci. 2008;50:2172–81.

    Article  CAS  Google Scholar 

  27. Obot IB, Obi-Egbedi NO, Umoren SA. The synergistic inhibitive effect and some quantum chemical parameters of 2,3-diaminonaphthalene and iodide ions on the hydrochloric acid corrosion of aluminium. Corros Sci. 2009;51:276–82.

    Article  CAS  Google Scholar 

  28. Jae-Yung Yu, Park M, Kim J. Solubilities of synthetic schwertmannite and ferrihydrite. Geochem J. 2002;36:119–32.

    Article  Google Scholar 

  29. Prasad SVS, Sitakara Rao V. Thermal transformation of iron (111) oxide hydrate gel. J Mater Sci. 1984;19:3266–70.

    Article  CAS  Google Scholar 

  30. Oliviera C, Marchetti GS, Do Carmo Rangel M. The effect the starting material on the thermal decomposition of iron oxyhydroxides. J Therm Anal Calorim. 2003;73:233–40.

    Article  Google Scholar 

  31. Barron V, Torrent J, De Grave E. Hydromaghemite, an intermediate in the hydrothermal transformation of 2-line ferrihydrite into hematite. Am Mineral. 2003;88:1679–88.

    CAS  Google Scholar 

  32. Shah Singh S, Kodama H. Effect of the presence of aluminum ions in iron solutions on the formation of iron oxyhydroxides (FeOOH) at room temperature under acidic environment. Clay Clay Miner. 1994;42:606–13.

    Article  Google Scholar 

  33. Gialanella S, Girardi F, Ischia G, Lonardelli I, Mattarelli M, Montagna M. On the goethite to hematite phase transformation. J Therm Anal Calorim. 2010;102:867–73.

    Article  CAS  Google Scholar 

  34. Rivas Mercury JM, Cabral AA. Thermal behavior and evolution of the mineral phases of Brazilian red mud. J Therm Anal Calorim. 2011;104:635–43.

    Article  CAS  Google Scholar 

  35. Dinesen AR, Pedersen CT, Bender Koch C. The thermal conversion of lepidocrocite (γ-FeOOH) revisited. J Therm Anal Calorim. 2001;64:1303–10.

    Article  CAS  Google Scholar 

  36. Przepiera K, Przepiera A. Thermal transformations of selected transition metals oxyhydroxides. J Therm Anal Calorim. 2003;74:659–66.

    Article  CAS  Google Scholar 

  37. Walter D, Buxbaum G. The mechanism of the thermal transformation from goethite to hematite. J Therm Anal Calorim. 2001;63:733–48.

    Article  CAS  Google Scholar 

  38. Przepiera K, Przepiera A. Kinetics of thermal transformations of precipitated magnetite and goethite. J Therm Anal Calorim. 2001;65:497–503.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by CNCSIS-UEFISCSU, project number PNII-IDEI 422/2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Samide.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samide, A., Tutunaru, B., Dobritescu, A. et al. Study of the corrosion products formed on carbon steel surface in hydrochloric acid solution. J Therm Anal Calorim 110, 145–152 (2012). https://doi.org/10.1007/s10973-011-2186-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-2186-1

Keywords

Navigation