Log in

Comparative experimental study of solar cookers using exergy analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This communication presents the comparative experimental study of solar cookers based on the exergy analysis. In this study two different types of solar cookers viz. paraboloid type and box type have been evaluated using exergy analysis. The experiments have been carried out with cookers filled with different volume of water viz. one and two liters along with the suitable quantity of rice. Data of temperatures and solar radiation have been measured for different food stuff on clear sky day of the month. It is found that the exergy efficiency increases as the volume of water increases, however, the exergy efficiency of paraboloid solar cooker is found to be higher than that of the box-type solar cooker for all the cases mentioned above. However, it is also found that the exergy efficiency vary with the cooking stuff and water which is due to the fact that the requirement of heating vary with the food stuff.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A sc :

Area of collector (m2)

C pw :

Specific heat of water (kJ/kg-K)

I b :

Beam radiation (W/m2)

I d :

Direct radiation (W/m2)

m w :

Mass of water (kg)

T a :

Ambient temperature (°C)

T s :

Sun temperature (°C)

\( T_{s}^{*} \) :

Effective diffuse radiation temperature (°C)

T wi :

Initial water temperature (°C)

T wf :

Final water temperature (°C)

ε:

Thermal exergy at temperature T

ε(T i):

Thermal exergy at temperature T i

\( \Upxi_{o} \) :

Exergy output (W/m2)

\( \Upxi_{i} \) :

Exergy input (W/m2)

ηex :

Exergy efficiency

References

  1. Funk PA. Evaluating the international standard procedure for testing solar cookers and reporting performance. Sol Energy. 2000;68(1):1–7.

    Article  Google Scholar 

  2. Mullick SC, Kandpal TC, Saxena AK. Thermal test procedure for box-type solar cookers. Sol Energy. 1987;39(4):353.

    Article  Google Scholar 

  3. Grupp M, Merkle T, Owen-Jones M. In second international solar cooker test. European committee for solar cooking research & synopsis. France: F-34700 Lodeve; 1994.

  4. Funk PA, Larson DL. Parametric model of solar cooker performance. Sol Energy. 1998;62(1):63–8.

    Article  Google Scholar 

  5. Patel NV, Philip SK. Performance evaluation of three solar concentrating cookers. Renew Energy. 2000;20(3):347–55.

    Article  Google Scholar 

  6. Binark AK, Turkmen N. Modelling of a hot box solar cooker. Energy Conv Mgmt. 1996;37:303–10.

    Article  Google Scholar 

  7. El-Sebaii AA. Thermal performance of a box type solar cooker with outer–inner reflectors. Energy. 1997;22:969–78.

    Article  Google Scholar 

  8. Habeebullah MB, Khalifa AM, Olwi I. The oven receiver: an approach toward the revival of concentrating solar cookers. Sol Energy. 1995;54:227–37.

    Article  Google Scholar 

  9. Buddhi D, Sahoo LK. Solar cooker with latent heat storage: design and experimental testing. Energy Conv Mgmt. 1997;38(5):493–8.

    Article  Google Scholar 

  10. Nahar NM. Design, development and testing of a novel non-tracking solar cooker. Int J Energy Res. 1998;22:1191–8.

    Article  Google Scholar 

  11. Gaur A, Singh OP, Singh SK, Pandey GN. Performance study of solar cooker with modified utensil. Renew Energy. 1999;18:121–9.

    Article  Google Scholar 

  12. Buddhi D, Sharma SD, Sawhney RL. Performance test of a box type solar cooker: effect of load on second figure of merit. Int J Energy Res. 1999;23:827–30.

    Article  Google Scholar 

  13. Al-Soud MS, Abdallah E, Akayleh A, Abdallah S, Hrayshat ES. A parabolic solar cooker with automatic two axes sun tracking system. Appl Energy. 2010;87:463–70.

    Article  Google Scholar 

  14. Mawire A, McPherson M, Van den Heetkamp RRJ. Discharging simulations of a thermal energy storage (TES) system for an indirect solar cooker. Sol Energy Mat Sol Cells. 2010;94:1100–6.

    Article  CAS  Google Scholar 

  15. Gunnewiek LH, Nguyen S, Rosen MA. Evaluation of the optimum discharge period for closed thermal energy storages using energy and exergy analyses. Sol Energy. 1993;51:39–43.

    Article  CAS  Google Scholar 

  16. Regulagadda P, Dincer I, Naterer GF. Exergy analysis of a thermal power plant with measured boiler and turbine losses. Appl Therm Eng. 2010;30:970–6.

    Article  CAS  Google Scholar 

  17. Dincer I. Thermal energy storage systems as a key technology in energy conservation. Int J Energy Res. 2002;26:568–88.

    Google Scholar 

  18. Tyagi VV, Pandey AK, Giridhar G, Bandyopadhyay B, Park SR, Tyagi SK. Comparative study based on exergy analysis of solar air heater collector using thermal energy storage. Int J Energy Res. 2011; (in press).

  19. Petela R. Exergy analysis of the solar cylindrical-parabolic cooker. Sol Energy. 2005;79:221–33.

    Article  CAS  Google Scholar 

  20. Mawire A, McPherson M, Van den Heetkamp RRJ. Simulated energy and exergy analyses of the charging of an oil–pebble bed thermal energy storage system for a solar cooker. Sol Energy Mat Sol Cells. 2008;92:1668–76.

    Article  CAS  Google Scholar 

  21. Mukaro R, Tinarwo D. Performance evaluation of a hot-box reflector solar cooker using a microcontroller-based measurement system. Int J Energy Res. 2008;32:1339–48.

    Article  Google Scholar 

  22. Onyegegbu SO, Morhenne J. Transient multidimensional second law analysis of solar collectors subjected to time-varying insolation with diffuse components. Sol Energy. 1993;50(1):85–95.

    Article  CAS  Google Scholar 

  23. Petela R. Exergy of undiluted thermal radiation. Sol Energy. 2003;74:469–88.

    Article  Google Scholar 

  24. Kreith F, Kreider J. Principles of solar engineering. New York: Hemisphere-McGraw-Hill; 1978.

    Google Scholar 

  25. Kotas TJ. Exergy based criteria of performance. In: Proceedings of the workshop on second law of thermodynamics, Erciyes University, Kayseri. 1990;1:21–27.

  26. Tyagi SK, Wang W, Kaushik SC, Singhal MK, Park SR. Exergy analysis and parametric study of concentrating type solar collectors. Int J Therm Sci. 2007;46:1304–10.

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors (AKP) highly appreciates the financial assistance due to Ministry of New & Renewable Energy, New Delhi, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Tyagi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandey, A.K., Tyagi, V.V., Park, S.R. et al. Comparative experimental study of solar cookers using exergy analysis. J Therm Anal Calorim 109, 425–431 (2012). https://doi.org/10.1007/s10973-011-1501-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1501-1

Keywords

Navigation