Log in

Kinetics of thermo-oxidative degradation of polypropylene/aluminum trihydroxide/organo Fe-montmorillonite nanocomposites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the article, the thermal oxidative degradation kinetics of pure polypropylene/aluminum trihydroxide (PP/ATH) and PP/ATH/organo Fe-montmorillonite (Fe-OMT) nanocomposites were investigated using Kissinger, Friedman and Flynn–Wall–Ozawa methods. The results showed that thermal oxidative degradation of PP/ATH/Fe-OMT nanocomposites to PP/ATH were complex reaction: the whole process of thermal oxidative degradation were composed with the decomposition of ATH, the cracking and charring of the backbone chains of PP, and the oxidative degradation of char, which the curses of energy mutative with the process of thermal oxidative degradation. The control steps were different in each degradation stage. The activation energy was high in the original degradation stage. It was due to the molecular structure and may closely relate with onset temperature. In the intermediate process, the activation energy was low. In the last stage of the degradation, the activation energy was graveled because the carbon may be oxidized. In the whole process of thermal oxidative degradation, the activation energy of PP/ATH/Fe-OMT nanocomposite was higher than that of PP/ATH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ristolainen N, Hippi U, Seppala J, Nykanen A, Ruokolainen J. Properties of polypropylene/aluminum trihydroxide composites containing nanosized organoclay. Poly Eng Sci. 2005;45(12):1568–75.

    Article  CAS  Google Scholar 

  2. Rothon R. The emergence of magnesium hydroxide as a fire retardant additive. In: The Plastic and Rubber Institute, editor. Flame Retardants 1990 Conference. London: Elsevier; 1990.

  3. Tang T, Chen X, Chen H, Meng X, Jiang Z, Bi W. Catalyzing carbonization of polypropylene itself by supported nickel catalyst during combustion of polypropylene/clay nanocomposite for improving fire retardancy. Chem Mater. 2005;17:2799–802.

    Article  CAS  Google Scholar 

  4. Gilman JW, Jackson CL, Morgan AB, Jr RH, Manias E, Giannelis EP et al., Flammability properties of polymer-layered-silicate nanocomposites polypropylene and polystyrene nanocomposites. Chem Mater. 2000; 12:1866–1873.

    Google Scholar 

  5. Kong QH, Hu Y, Song L, Yi CW. Synergistic flammability and thermal stability of polypropylene/aluminum trihydroxide/Fe-montmorillonite nanocomposites. Polym Adv Technol. 2009;20:404–9.

    Article  CAS  Google Scholar 

  6. Opfermann J. Kinetic analysis using multivariate non-linear regression. I. Basic concepts. J Therm Anal Calorim. 2000;60:641–58.

    Article  CAS  Google Scholar 

  7. Mamleev V, Bourbigot S, Le Bras M, Duquesne S, Sestak J. Modelling of nonisothermal kinetics in thermogravimetry. Phys Chem Chem Phys. 2000;2(20):4708–16.

    Article  CAS  Google Scholar 

  8. Mamleev V, Bourbigot S, Le Bras M, Lefevbre J. Three model-free methods for calculation of activation energy in TG. J Therm Anal Calorim. 2004;78(3):1009–27.

    CAS  Google Scholar 

  9. Opfermann JR, Kaisersberger E, Flammersheim HJ. Model-free analysis of thermoanalytical data-advantages and limitations. Thermochim Acta. 2002;391(1–2):117–27.

    Google Scholar 

  10. Rose N, Le Bras M, Bourbigot S, Delobel R, Costes B. Comprehensive study of the oxidative degradation of an epoxy resin using the degradation front model. Polym Degrad Stab. 1996;54(2–3):355–60.

    Article  CAS  Google Scholar 

  11. Flynn JH. Polymer degradation. Handbook of thermal analysis and calorimetry, Amsterdam: Elsevier; 2002; 3: 587–651.

  12. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  13. Lomakin SM, Dubnikova IL, Shchegolikhin AN, Zaikov GE, Kozlowski R, Kim GM, Michler GH. Thermal degradation and combustion behavior of the polyethylene/clay nanocomposite prepared by melt intercalation. J Therm Anal Calorim. 2008;94(3):719–26.

    Article  CAS  Google Scholar 

  14. Abate L, Blanco I, Bottino FA, Di Pasquale G, Fabbri E, Orestano A, Pollicino A. Kinetic study of the thermal degradation of PS/MMT nanocomposites prepared with imidazolium surfactants. J Therm Anal Calorim. 2008;91(3):681–6.

    Article  CAS  Google Scholar 

  15. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Japan. 1965;38(1):1881–6.

    Article  CAS  Google Scholar 

  16. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry: application to phenolic plastic. J Polym Sci Part C. 1964;6:183–95.

    Google Scholar 

  17. Kong QH, Hu Y, Song L, Wang YL, Chen ZY, Wan WC. Influence of Fe-MMT on crosslinking and thermal degradation in silicone rubber/clay nanocomposites. Polym Adv Technol. 2006; 17(6): 463–467.

    Google Scholar 

  18. Zhu J, Uhl FM, Morgan AB, Wilkie CA. Studies on the mechanism by which the formation of nanocomposites enhances thermal stability. Chem Mater. 2001; 13(12): 4649–4654.

    Google Scholar 

  19. Goodarzi V, Jafari SH, Khonakdar HA, Monemian SA, Mortazavi M. An assessment of the role of morphology in thermal/thermo-oxidative degradation mechanism of PP/EVA/clay nanocomposites. Polym Degrad Stab. 2010;95(5):859–69.

    Article  CAS  Google Scholar 

  20. Wang DY, Wang YZ, Wang JS, Chen DQ, Zhou Q, Yang B, Li WY. Thermal oxidative degradation behaviours of flame-retardant copolyesters containing phosphorous linked pendent group/montmorillonite nanocomposites. Polym Degrad Stab. 2005;87:171–6.

    Article  CAS  Google Scholar 

  21. Vyazovkin S, Dranca I, Fan XW, Advincula R. Kinetics of the thermal and thermo-oxidative degradation of a polystyrene/clay nanocomposite. Macromol Rapid Comm. 2004;25(3):498–503.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was financially supported by the Foundation of State Key Laboratory of Fire Science (No. HZ2010-KF03), Natural Science fund of University in Jiangsu (No. 09KJD620001) and the joint fund of NSFC and CAAC (No. 61079015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qinghong Kong or Yuan Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, Q., Hu, Y., Song, L. et al. Kinetics of thermo-oxidative degradation of polypropylene/aluminum trihydroxide/organo Fe-montmorillonite nanocomposites. J Therm Anal Calorim 104, 1145–1151 (2011). https://doi.org/10.1007/s10973-011-1346-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1346-7

Keywords

Navigation