Log in

Fire retardancy mechanisms of arylphosphates in polycarbonate (PC) and PC/acrylonitrile-butadiene-styrene

The key role of decomposition temperature

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The pyrolysis of polycarbonate (PC) and PC/acrylonitrile-butadiene-styrene (PC/ABS) with and without arylphosphates (triphenylphosphate TPP, resorcinol-bis(diphenyl phosphate) RDP and bisphenol A bis(diphenyl phosphate) BDP) is investigated by thermal analysis as key to understanding the flame retardancy mechanisms and corresponding structure–property relationships. The correspondence between the decomposition temperature range of arylphosphates and PC is pointed out as prerequisite for the occurrence of the reaction between arylphosphate and structures that are typical for the beginning of PC decomposition. Resulting cross-linking enhances charring in the condensed phase and competes with the alternative release of phosphate in the gas phase and thus flame inhibition. Flame inhibition was identified as the main flame retardancy mechanism. The additional condensed phase mechanisms optimise the performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Eckel T. The most important flame retardant plastics. In: Troitzsch J, editor. Plastics flammability handbook. Munich: Hanser; 2004. p. 158–72.

    Google Scholar 

  2. Levchik SV, Weil ED. Flame retardants in commercial use or in advanced development in polycarbonate blends. J Fire Sci. 2006;24:137–51.

    Article  CAS  Google Scholar 

  3. Levchik SV, Bright DA, Moy P, Dashevsky S. New developments in fire retardant non-halogen aromatic polyphosphates. J Vinyl Addit Technol. 2000;6:123–8.

    Article  CAS  Google Scholar 

  4. Levchik SV, Weil ED. A review of recent progress in phosphorus-based flame retardants. J Fire Sci. 2006;5:345–64.

    Article  Google Scholar 

  5. Green J. Phosphorus-containing flame retardants. In: Grand AF, Wilkie CA, editors. Fire retardancy of polymeric materials. New York: Marcel Dekker Inc.; 2000. p. 147–70.

    Google Scholar 

  6. Hastie JW. Molecular-basis of flame inhibition. J Res Nat Bur Stand Sect A. 1973;77:733–54.

    CAS  Google Scholar 

  7. Pawlowski KH, Schartel B. Flame retardancy mechanisms of aryl phosphates in combination with boehmite in bisphenol A polycarbonate/acrylonitrile-butadiene-styrene blends. Polym Degrad Stab. 2008;93:657–67.

    Article  CAS  Google Scholar 

  8. Levchik SV, Bright DA, Alessio GA, Dashevsky S. New halogen-free fire retardant for engineering plastic applications. J Vinyl Addit Technol. 2001;7:98–103.

    Article  CAS  Google Scholar 

  9. Pawlowski KH, Schartel B. Flame retardancy mechanisms of triphenyl phosphate, resorcinol bis(diphenyl phosphate) and bisphenol a bis(diphenylphosphate) in polycarbonate/acrylonitrile-butadiene-styrene blends. Polym Int. 2007;56:1404–14.

    Article  CAS  Google Scholar 

  10. Levchik SV, Bright DA, Dashevsky S, Moy P. Application and mode of fire retardant action of aromatic phosphates. In: Al-Malaika S, Golovoy A, Wilkie CA, editors. Specialty polymer additives, principles and applications. Oxford: Blackwell Science; 2001. p. 259–69.

    Google Scholar 

  11. Braun U, Balabanovich AI, Schartel B, Knoll U, Artner J, Ciesielski M, et al. Influence of the oxidation state of phosphorus on the decomposition and fire behaviour of flame-retarded epoxy resin composites. Polymer. 2006;47:8495–508.

    Article  CAS  Google Scholar 

  12. Pearce EM, Weil ED, Barinov VY. Fire smart polymers. In: Nelson GL, Wilkie CA, editors. Fire and polymers, materials and solutions for hazard prevention. Washington: ACS; 2001. p. 37–48.

    Chapter  Google Scholar 

  13. Weil ED. Synergists, adjuvants and antagonists in flame-retardant systems. In: Grand AF, Wilkie CA, editors. Fire retardancy of polymeric materials. New York: Marcel Dekker Inc.; 2000. p. 115–45.

    Google Scholar 

  14. Schartel B, Braun U, Pawlowski KH. Phosphorus-containing polymeric materials: the impact of pyrolysis on flame retardancy. In: Interflam 2007 Proceedings of the eleventh international conference, vol. 1. Greenwich: Interscience Communications Limited; 2007. p. 71–8.

  15. Schartel B, Pawlowski KH, Lyon RE. Pyrolysis combustion flow calorimeter: a tool to assess flame retarded PC/ABS material? Thermochim Acta. 2007;462:1–14.

    Article  CAS  Google Scholar 

  16. Braun U, Schartel B, Fichera MA, Jäger C. Flame retardancy mechanisms of aluminium phosphinate in combination with melamine polyphosphate and zinc borate in glass-fibre reinforced polyamide 6, 6. Polym Degrad Stab. 2007;92:1528–45.

    Article  CAS  Google Scholar 

  17. Schartel B, Kunze R, Neubert D. Red phosphorus-control led decomposition for fire retardant PA 66. J Appl Polym Sci. 2002;83:2060–71.

    Article  CAS  Google Scholar 

  18. Braun U, Schartel B. Flame retardant mechanisms of red phosphorus and magnesium hydroxide in high impact polystyrene. Macromol Chem Phys. 2004;205:2185–96.

    Article  CAS  Google Scholar 

  19. Georlette P, Simons J, Costa L. Halogen-containing fire-retardant compounds. In: Grand AF, Wilkie CA, editors. Fire retardancy of polymeric materials. New York: Marcel Dekker Inc.; 2000. p. 245–84.

    Google Scholar 

  20. Babrauskas V. Development of the cone calorimeter–a bench scale heat release rate apparatus based on oxygen consumption. Fire Mater. 1984;8:81–95.

    Article  CAS  Google Scholar 

  21. Schartel B, Hull TR. Development of fire-retarded materials - interpretation of cone calorimeter data. Fire Mater. 2007;31:327–54.

    Article  CAS  Google Scholar 

  22. Schartel B, Bartholmai M, Knoll U. Some comments on the use of cone calorimeter data. Polym Degrad Stab. 2005;88:540–7.

    Article  CAS  Google Scholar 

  23. Lyon RE, Walters RN. Pyrolysis combustion flow calorimeter. J Anal Appl Pyrol. 2004;71:27–46.

    Article  CAS  Google Scholar 

  24. Levchik SV, Weil ED. Overview of recent developments in the flame retardancy of polycarbonates. Polym Int. 2005;54:981–98.

    Article  CAS  Google Scholar 

  25. Pawlowski KH, Schartel B. Mechanisms of arylphosphates as flame retardants in PC/ABS. In: Lewin M, editor. Proceedings of the conference on recent advances in flame retardancy of polymeric materials, vol. 17. Norwalk: BCC; 2006. p. 132–42.

  26. Murashko EA, Levchik GF, Levchik SV, Bright DA, Dashevsky S. Fire-retardant action of resorcinol bis(diphenyl phosphate) in PC-ABS blend. II. Reactions in the condensed phase. J Appl Polym Sci. 1999;71:1863–72.

    Article  CAS  Google Scholar 

  27. Lyon RE. Plastics and rubber. In: Harper CA, editor. Handbook of building materials for fire protection. New York: McGraw-Hill; 2004. p. 3:3.1–51.

    Google Scholar 

  28. Braun U, Bahr H, Sturm H, Schartel B. Flame retardancy mechanisms of metal phosphinates and metal phosphinates in combination with melamine cyanurate in glass-fiber reinforced poly(1, 4-butylene terephthalate): the influence of metal cation. Polym Adv Technol. 2008;19:680–92.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Bayer MaterialScience AG, Dormagen, Germany, for the material support and in particular Dr. V. Taschner, Dr. T. Eckel and Dr. D. Wittmann. Special thanks also go to Dr. U. Braun and H. Bahr for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Schartel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perret, B., Pawlowski, K.H. & Schartel, B. Fire retardancy mechanisms of arylphosphates in polycarbonate (PC) and PC/acrylonitrile-butadiene-styrene. J Therm Anal Calorim 97, 949–958 (2009). https://doi.org/10.1007/s10973-009-0379-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0379-7

Keywords

Navigation