Log in

Thermal degradation of poly(lactic acid) measured by thermogravimetry coupled to Fourier transform infrared spectroscopy

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal decomposition of poly(lactic acid) (PLA) has been studied using thermogravimetry coupled to Fourier transform infrared spectroscopy (TGA-FTIR). FTIR analysis of the evolved decomposition products shows the release of lactide molecule, acetaldehyde, carbon monoxide and carbon dioxide. Acetaldehyde and carbon dioxide exist until the end of the experiments, whereas carbon monoxide gradually decreases above the peak temperature in that the higher temperature benefits from chain homolysis and the production of carbon dioxide. A kinetic study of thermal degradation of PLA in nitrogen has been studied by means of thermogravimetry. It is found that the thermal degradation kinetics of PLA can be interpreted in terms of multi-step degradation mechanisms. The activation energies obtained by Ozawa–Flynn–Wall method and Friedman’s method are in good agreement with that obtained by Kissinger’s method. The activation energies of PLA calculated by the three methods are 177.5 kJ mol−1, 183.6 kJ mol−1 and 181.1 kJ mol−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chow WS, Lok SK. Thermal properties of polylactides effect of molecular mass and nature of lactide isomer. J Therm Anal Calorim. 2009;95:957–64.

    Article  Google Scholar 

  2. Ahmed J, Zhang JX, Song Z, Varshney SK. Thermal properties of poly(lactic acid)/organo-montmorillonite nanocomposities. J Therm Anal Calorim. 2009;95:627–32.

    Article  Google Scholar 

  3. Drumond WS, Mothé CG, Wang SH. Quantitative analysis of biodegradable amphiphilic poly(L-lactide)-block-poly(ethyleneglycol)-blockpoly(L-lactide) by using TG, FTIR and NMR. J Therm Anal Calorim. 2006;85:173–7.

    Article  CAS  Google Scholar 

  4. Martino VP, Ruseckaite RA, Jiménez A. Thermal and mechanical characterization of plasticized poly (L-lactide-co-D,L-lactide) films for food packaging. J Therm Anal Calorim. 2006;86:707–12.

    Article  CAS  Google Scholar 

  5. Jamshidi K, Hyon SH, Ikada Y. Thermal characterizaton of polylactides. Polymer. 1988;29:2229–34

    Article  CAS  Google Scholar 

  6. McNeill IC, Leiper HA. Degradation studies of some polyesters and polycarbonates-2. Polylactide: degradation under isothermal conditions, thermal degradation mechanism and photolysis of the polymer. Polym Degrad Stab. 1985;11:309–26.

    Article  CAS  Google Scholar 

  7. McNeill IC, Leiper HA. Degradation studies of some polyesters and polycarbonates-1. Polylactide: general features of the degradation under programmed heating conditions. Polym Degrad Stab. 1985;11:267–85.

    Article  CAS  Google Scholar 

  8. Kopinke FD, Remmler M, Mackenzie K, Moder M. Thermal decomposition of biodegradable polyesters-II. Poly (lactic acid). Polym Degrad Stab. 1996;53:329-42.

    Article  CAS  Google Scholar 

  9. Kopinke FD, Mackenzie K. Mechanism aspects of the thermal degradation of poly(lactic acid) and poly (b-hydroxybutyric acid). J Anal Appl Pyrol. 1997;40:43–53.

    Article  Google Scholar 

  10. Cam D, Marucci M. Influence of residual monomers and metals on poly (L-lactide) thermal stability. Polymer. 1997;38:1879–84.

    Article  CAS  Google Scholar 

  11. Babanalbandi A, Hill DJT, Hunter DS, Kettle L. Thermal stability of poly(lactic acid) before and after g-radiolysis. Polym Int. 1999;48:980–84.

    Article  CAS  Google Scholar 

  12. Aoyagi Y, Yamashita K, Doi Y. Thermal degradation of poly[(R)-3-hydroxybutyrate], poly[ε-caprolactone], and poly[(S)-lactide]. Polym Degrad Stab. 2002;76:53–9.

    Article  CAS  Google Scholar 

  13. Fan YJ, Nishidaa H, Shiraib Y. Pyrolysis kinetics of poly (L-lactide) with carboxyl and calcium salt end structures. Polym Degrad Stab. 2003;79:547–62.

    Article  CAS  Google Scholar 

  14. Fan YJ, Nishidaa H, Shiraib Y. Thermal stability of poly (L-lactide): influence of end protection by acetyl group. Polym Degrad Stab. 2004;84:143–9.

    Article  CAS  Google Scholar 

  15. Fan YJ, Nishidaa H, Shiraib Y. Thermal degradation behaviour of poly(lactic acid) stereocomplex. Polym Degrad Stab. 2004;86:197–208.

    Article  CAS  Google Scholar 

  16. Nishidaa H, Mori T, Hoshihara S. Effect of tin on poly(l-lactic acid) pyrolysis. Polym Degrad Stab. 2003;81:515–23.

    Article  Google Scholar 

  17. Liu XB, Zou B, Li WT. Kinetics of thermo-oxidative and thermal degradation of poly(D,L-lactide) (PDLLA) at processing temperature. Polym Degrad Stab. 2006;91:3259–65.

    Article  CAS  Google Scholar 

  18. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–91.

    Article  CAS  Google Scholar 

  19. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Lett. 1966;4:323–8.

    Article  CAS  Google Scholar 

  20. Chrissafis K, Paraskevopoulos KM, Bikiaris DN. Thermal degradation mechanism of poly(ethylene succinate) and poly(butylene succinate): comparative study. Thermochimica Acta. 2005;435:142–50.

    Article  CAS  Google Scholar 

  21. Chrissafis K, Paraskevopoulos KM, Bikiaris DN. Thermal degradation kinetics of the biodegradable aliphatic polyester, poly(propylene succinate). Polym Degrad Stab. 2006;91:60–8.

    Article  CAS  Google Scholar 

  22. Corneliu H, Tachita VB, Oana P. Kinetics of thermal degradation in non-isothermal conditions of some phosphorus-containing polyesters and polyesterimides. Eur Polym J. 2007;43:980–8.

    Article  Google Scholar 

  23. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to phenolic plastic. J Polym Sci Part C. 1964;6:183–95.

    Google Scholar 

  24. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Nat Bur Stand. 1956;57:217–21.

    CAS  Google Scholar 

  25. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–12.

    Article  CAS  Google Scholar 

  26. Jang BN, Wilkie CA. The thermal degradation of bisphenol A polycarbonate in air. Thermochimica Acta. 2005;426:73–84.

    Article  CAS  Google Scholar 

  27. Marcilla A, Gomez-Siurana A, Menargues S. Qualitative study of the evolution of the composition of the gas evolved in the thermal and HY-catalytic oxidative degradation of EVA copolymers. Thermochimica Acta. 2005;438:155–63.

    Article  CAS  Google Scholar 

  28. **e W, Gao ZM, Pan WP. Thermal degradation chemistry of alkyl quaternary ammonium montmorillonite. Chem Mater. 2001;13:2979–90.

    Article  CAS  Google Scholar 

  29. **e W, Gao ZM, Liu KL. Thermal characterization of organically modified montmorillonite. Thermochimca Acta. 2001;367–368:339–50.

    Article  Google Scholar 

  30. Wang GA, Cheng WM, Tu YL. Characterizations of a new flame-retardant polymer. Polym Degrad Stab. 2006;91:3344–53.

    Article  CAS  Google Scholar 

  31. Vyazovkin S, Sbirrazzuoli N. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun. 2006;27:1515–32.

    Article  CAS  Google Scholar 

  32. Zhang J, Zeng JL, Liu YY, Sun LX. Thermal decomposition kinetics of the synthetic complex Pb(1,4-BDC)·(DMF)(H2O). J Therm Anal Calorim. 2008;91:189–93.

    Article  CAS  Google Scholar 

  33. Vyazovkin S. Model-free kinetics staying free of multiplying entities without necessity. J Therm Anal Calorim. 2006;83:45–51.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of the Scientific Research Foundation of Hubei Provincial Education Department (No: B200717003) and the Research Foundation of Wuhan University of Science and Engineering in China (No. 20073202) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hantao Zou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, H., Yi, C., Wang, L. et al. Thermal degradation of poly(lactic acid) measured by thermogravimetry coupled to Fourier transform infrared spectroscopy. J Therm Anal Calorim 97, 929–935 (2009). https://doi.org/10.1007/s10973-009-0121-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0121-5

Keywords

Navigation