Log in

The deep investigation of structural and opto-electrical properties of Yb2O3 thin films and fabrication of Al/Yb2O3/p-Si (MIS) Schottky barrier diode

  • Original Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The present research explores the fabrication of a metal insulator semiconductor Schottky barrier diode (SBD) with rare earth metal oxide (Yb2O3) thin films as insulators that are effectively developed on a large scale using the low-cost jet nebulizer spray pyrolysis technique (JNSP). The Yb2O3 thin films are deposited at various substrate temperatures (350 °C–550 °C) to ascertain its influence on the characteristic properties of the material. The structural, morphological and opto-electrical properties are investigated using various characterization techniques. Here, X-ray diffraction (XRD) analysis revealed the single crystalline cubic crystal structure of Yb2O3 thin films. Field emission scanning electron microscope (FESEM) images show the presence of uniformly distributed cage and globular like structures spread over the entire surface of the Yb2O3 films. The elemental composition study demonstrates the presence of Yb and O. The optical direct energy band gap of Yb2O3 thin films have been analyzed through UV-Visible spectra. Current – voltage measurements were analyzed in dark and light conditions for the Al/Yb2O3/p-Si structured Schottky barrier diodes (SBDs) which are fabricated with interfacial layers at different substrate temperatures. Further, the functionality of the SBDs was tested at different temperatures ranging from 30 °C to 150 °C. The experimental results of all SBDs indicate a linear reduction in the ideality factor (n) up to 2.537 and 2.059 with a slight increase in the effective barrier height (ФB) of 0.789 eV& 0.638 in dark and light conditions, respectively. The SBD fabricated at 550 °C recorded good performance, which will be suitable for thermal dependent electronic device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Kang H-S, Reddy MSP, Kim DS, Kim KW, Ha JB, Lee YS, Choi HC, Lee JH (2013) J Phys D: Appl Phys 46:155101-1–15155106

  2. Pearton SJ, Ren F, Zhang AP, Dang G, Cao XA, Lee KP, Cho H, Gila BP, Johnson JW, Monier C, Abernathy CR, Han J, Baca AG, Chyi JI, Lee CM, Nee TE, Chuo CC, Chu SNG (2001) Mater Sci Eng B 82:227–231

  3. Simchi H, Heidarisaani M, Esmaeilzadeh M (2013) AIP Adv 3:032124

  4. Simchi H, Heidarisaani M, Esmaeilzadeh M (2013) AIP Adv 3:032124.

  5. **a P, Feng X, Ng RJ, Wang S, Chi D, Li C, He Z, Liu X, Ang K-W (2017) Sci Rep 7:40669

  6. Demircioglu O, Karatas S, Yıldırım N, Bakkaloglu OF, Turut A (2011) J Alloys Compd 509: 6433–6439

  7. Ejderha K, Duman S, Nuhoglu C, Urhan F, Turut A (2014) J Appl Phys 116:234503

  8. Yıldırım M, Kocyigit A (2018) J Alloys Compd 768:1064–1075

  9. Pan T-M, Cheng C-H, Lee C-D (2009) J Electrochem Soc 156:J108-J111

  10. Scarel G, Svane A, Fanciulli M (2006) Top AppL Phys 106(2):1–14

  11. Liu, Liu GX, Zhu HH, Xu F, Fortunato E, Martins R, Shan FK (2014) ACS Appl Mater Interfaces 6:17364–17369

  12. Esro M, Kolosov O, Stolojan V, Jones PJ, Milne WI, Adamopoulos G (2017) Adv Electron Mater 3:1700025

    Article  Google Scholar 

  13. Ben Farhat L, Amami M, Hlil EK, Ben R Hassen (2010) Mater Res Bull 45:1964–1968

    Article  Google Scholar 

  14. Pan Tung-Ming, Chen Ching-Hung, Chen Fa-Hsyang, Huang Yu-Shu, Her Jim-Long (2015) J Disp Technol 11(3):248–254.

    Article  CAS  Google Scholar 

  15. Rajagopal Reddy V, Dasaradha Rao V, Janardhanam V, Kang M-S, Choi C-J (2013) Mater Transac 54(12):2173–2179.

  16. Jyothi I, Janardhanam V, Kim J-H, Yun H-J, Jeong J-C, Hong H, Lee SN, Choi CJ (2016) J Alloys Compd 07:292

  17. Marnadu R, Chandrasekaran J, Vivek P, Balasubramani V, Maruthamuthu S (2020) Zeitschrift für Physikalische Chemie 234(2):355–379.

  18. Vivek P, Chandrasekaran J, Marnadu R, Maruthamuthu S, Balasubramani V (2019) Superlattices Microstructures 133:106197

  19. Marnadu R, Chandrasekaran J, Raja M, Balaji M, Maruthamuthu S, Balraju P (2018) Superlattices Microstructures 119:134

    Article  CAS  Google Scholar 

  20. Ramana CV, Utsunomiya S, Ewing RC, Julien CM, Becker U (2006) J Phys Chem B110:10430

  21. Balasubramani V, Chandrasekaran J, Marnadu R, Vivek P, Maruthamuthu S, Rajesh S (2019) J Inorg Organomet Polym 29:1533–1547.

  22. Pan T-M, Huang W-S (2009) Appl Surf Sci 255:4979–4982

  23. Wiktorczyk T, Wesolowska C (1980) Thin Solid Films 37(1–2):107–109

  24. Malvestuto M, Scarel G, Wiemer C, Fanciulli M, Acapito F D’, Boscherii F, X (2006) Nucl Instr Meth Phys Res B 246:90–95

  25. Oh I-K, Kim K, Lee Z, Ko KY, Lee C-W, Lee S-J, Myung JM, Lansalot-Matras C, Noh W, Dussarrat C, Kim H, Lee H-B-R (2015) Chem Mater 27:148–156

  26. Spiga S, Wiemer C, Scarel G, Costa O, Marco, Fanciulli M (2007) Top Appl Phys 106:203–223

  27. Marnadu R, Chandrasekaran, Raja M, Balaji M, Balasubramani V (2018) J Mater Sci: Mater Electronics 29:2618–2627

  28. Sumathi P, Chandrasekaran J, Marnadu R, Muthukrishnan S, Maruthamuthu S (2018) J Mater Sci: Mater Electronics 10854-018-9776-7

  29. Mohan KS, Panneerselvam A, Chandrasekaran J, Marnadu R, Shkir Mohd. (2021) Appl Nanosci 11:1617–1635

  30. Petroff P, Sheng TT, Sinha AK, Rozgonyi GA, Alexander FB (1973) J Appl Phys 44:2545

  31. Qian C, Tianmei Z, Hongrong L (2013) Adv Condens Matter Phys 2013: 519869

  32. Balaji M, Chandrasekaran J, Raja M (2016) Mater Sci Semiconductor Process 43:104–113

  33. Titov, Sokolova NP, Vorob’eva MV, Opolchenova NL, Eremenko ZV, Stepareva NN (2009) Inorg Mater 45(8):884–888. ISSN 0020-1685

  34. Henriques MS, Ferreira AC, Cru A, Ferreira LM, Branco JB, Brázda P, Jurek K, Stora T, Gonçalves AP (2015) Ceram Int 41:10795–10802

    Article  CAS  Google Scholar 

  35. Suresh R, Ponnuswamy V, Sankar C, Manickam M, Mariappan M (2016) RSC Adv 6:53967–53980.

  36. Lobaccaro P, Raygani A, Oriani A, Miani N, Piotto A, Kapadia R, Zheng M, Yu Z, Magagnin L, Chrzan DC, Maboudian R, Javey A (2014) J Electrochemical Soc 161(14):D794–D800

  37. Mohanraj K, Balasubramanian D, Chandrasekaran J (2018) J Alloys Compd, https://doi.org/10.1016/j.jallcom.2018.11.264

  38. Ohmi S, Kobayashi ZC, Kashiwagi I, Ohshima C, Ishiwara H, Iwai H (2003) J Electrochemical Soc 150(7):F134–F140

  39. Akhtar MJ, Alhadlaq HA, Alshamsan A, Khan MAM (2015) Sci Rep 5:13876

  40. Kahraman A, Karacali H, Yilmaz E (2020) J Alloys Compd 825:154171

  41. Suresh R, Ponnuswamy V, Mariappan R, Senthilkumar N (2014) Ceram Int 40:437–445

  42. Muralidharan M, Sivakumar K, Sivaji K (2018) Mechanics, Mater Sci Eng 15. ISSN 2412-5954

  43. Vivek P, Chandrasekaran J, Marnadu R, Maruthamuthu S, Balasubramani V (2019) Superlattices Microstruct 133:106197.

  44. Guo W, Hao H, ** S, Su Q, Li H, Hu X, Gan Y, Qin L, Gao W, Liu G (2016) Ceram Int 12:077

  45. Alfaramavi K (2008) Optoelectronics Adv Mater – Rapid Commun 2:763–765

  46. Raja M, Chandrasekaran J, Balaji M, Janarthanan B (2016) Mater Sci Semicond Process 56:145

  47. Ravinandan M, Koteswara Rao Peta, Rajagopal Reddy V (2009) Semicond Sci Technol 24:035004

  48. Rajagopal Reddy V, Sri Silpa D, Janardhanam V, Yun HJ (2015) Electron Matter Lett 11(1):73–81

  49. Katsuno T, Watanabe Y, Fujiwara H, Konishi M, Naruoka H, Morimoto J, Morino T (2011) T Endo Appl Phys Lett 98:222111

  50. Mohan KS, Panneerselvam A, Marnadu R, Chandrasekaran J, Shkir Mohd., Tataroğlu A (2021) Inorg Chem Commun 129:108646.

  51. Qasrawi AF, Zakarneh YA, Gasanly NM (2017) IEEE Sens J 17(14):4429–4434

  52. Mahesha MG, Kasturi VB, Shivakumar GK (2008) Turk J Phys 32:151–156

  53. Tataroglu A, Altındal S (2008) Microelectronic Eng 85:1866–1871

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Mohan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panneerselvam, A., Mohan, K.S., Marnadu, R. et al. The deep investigation of structural and opto-electrical properties of Yb2O3 thin films and fabrication of Al/Yb2O3/p-Si (MIS) Schottky barrier diode. J Sol-Gel Sci Technol 102, 597–613 (2022). https://doi.org/10.1007/s10971-021-05683-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05683-y

Keywords

Navigation